


How to Efficiently Find the Most Common Value in a Pandas DataFrame Group?
GroupBy pandas DataFrame and Select Most Common Value
Problem
Suppose you have a data frame with multiple string columns. Each combination of the first two columns should have only one valid value in the third column. You need to clean the data consistently by grouping the data frame by the first two columns and selecting the most common value of the third column for each combination.
The following code demonstrates an attempt to achieve this:
import pandas as pd<br>from scipy import stats</p> <p>source = pd.DataFrame({</p> <div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:php;toolbar:false">'Country': ['USA', 'USA', 'Russia', 'USA'], 'City': ['New-York', 'New-York', 'Sankt-Petersburg', 'New-York'], 'Short name': ['NY', 'New', 'Spb', 'NY']})
source.groupby(['Country','City']).agg(lambda x: stats.mode(x['Short name'])[0])
However, the last line of code fails with a KeyError. How can you fix this issue?
Solution
Pandas >= 0.16
For Pandas versions 0.16 and later, use the following code:
source.groupby(['Country','City'])['Short name'].agg(pd.Series.mode)<br>
This code uses the pd.Series.mode function, which was introduced in Pandas 0.16, to find the most common value in each group.
Alternatives for dealing with Multiple Modes
The Series.mode function handles cases with multiple modes effectively:
- If there are multiple modes, it returns a Series containing all the modes.
- If you need a separate row for each mode, use GroupBy.apply(pd.Series.mode).
- If you need any one of the modes, use GroupBy.agg(lambda x: pd.Series.mode(x)[0]).
Alternatives to Consider
While you could use statistics.mode from Python, it doesn't handle multiple modes well and may raise a StatisticsError. Hence, it's not recommended.
The above is the detailed content of How to Efficiently Find the Most Common Value in a Pandas DataFrame Group?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python's applications in scientific computing include data analysis, machine learning, numerical simulation and visualization. 1.Numpy provides efficient multi-dimensional arrays and mathematical functions. 2. SciPy extends Numpy functionality and provides optimization and linear algebra tools. 3. Pandas is used for data processing and analysis. 4.Matplotlib is used to generate various graphs and visual results.
