Home Backend Development Python Tutorial Building state machine library with help from AI tools

Building state machine library with help from AI tools

Nov 27, 2024 pm 01:02 PM

Just out of boredom, while waiting for my follow-up interview sessions, I built a state-machine library, powered by genruler. I built one in the past, to be exact, during my first job after graduation. This implementation is loosely based on the design my supervisor drafted back then. The project also aimed to showcase how the rule DSL can be utilized.

According to the helpful summary returned by a Google search on finite state machine (emphasis mine)

A “finite state machine” means a computational model where a system can only be in a limited number of distinct states at any given time, and transitions between these states are triggered by specific inputs, essentially allowing it to process information based on a set of defined conditions with no possibility of having an infinite number of states; “finite” here refers to the limited set of possible states the system can exist in.

The library receives a dictionary that represents the schema of the finite state machine. For example, we want to build an order tracking system

Building state machine library with help from AI tools
Finite state machine diagram generated by Graphviz

And the schema would look something like this (in truncated YAML form for clarity)

machine:
  initial_state: pending_payment

states:
  pending_payment:
    name: pending payment
    transitions:
      order_authorization:
        name: order is authorized
        destination: authorized
        rule: (condition.equal (basic.field "is_authorized") (boolean.tautology))

  authorized:
    name: authorized
    action: authorize_order
    transitions:
      order_partially_paid:
        name: order is partially paid
        destination: partially_paid
        rule: (boolean.tautology)
      order_fully_paid:
        name: order is fully paid
        destination: paid
        rule: (boolean.tautology)

    ...
Copy after login
Copy after login

Therefore, to set everything up, we call

import genstates
import yaml
import order_processor

with open("states.yaml") as schema:
  machine = genstates.Machine(yaml.safe_load(schema), order_processor)
Copy after login

So in this fictional example, we will receive some payload whenever there is a change in the order. For example, when the seller acknowledges the order, we get

{
  "is_authorized": true,
  ...
}
Copy after login

We can then check through the library

state = machine.initial # assume the order is created

transition = machine.get_transition(state, "order_authorization")

assert transition.check_condition(payload)
Copy after login

The check also runs an additional validation check if defined in the schema. This is helpful if you intend to return an error message to the caller.

try:
  assert transition.check_condition(payload)
except ValidationFailedError as e:
  logger.exception(e)
Copy after login

Sometimes, we know that every time the payload arrives, it should trigger a transition, but we don’t always know which one. Therefore, we just pass it into Machine.progress

try:
  state = machine.progress(state, payload)
except ValidationFailedError as e:
  logger.exception(e)
Copy after login

Once knowing what state the order should progress, we can start writing code to work on the logic

# fetch the order from database
order = Order.get(id=payload["order_id"])
current_state = machine.states[order.state]

# fetch next state
try:
    new_state = machine.progress(current_state, payload)
except ValidationFailedError as e:
    # validation failed, do something
    logger.exception(e)
    return
except MissingTransitionError as e:
    # can't find a valid transition from given payload
    logger.exception(e)
    return
except DuplicateTransitionError as e:
    # found more than one transition from given payload
    logger.exception(e)
    return

# do processing (example)
log = Log.create(order=order, **payload)
log.save()

order.state = new_state.key
order.save()
Copy after login

Ideally, I can also extract the processing logic away, which is the reason I imported order_processor in the beginning. In the authorization state definition, we also defined an action

authorized:
    name: authorized
    action: authorize_order
    ...
Copy after login

So in the module order_processor, we define a new function called authorized_order

def authorize_order(payload):
    # do the processing here instead
    pass
Copy after login

Such that the following is possible, where state management code is separated from the rest of processing logic

machine:
  initial_state: pending_payment

states:
  pending_payment:
    name: pending payment
    transitions:
      order_authorization:
        name: order is authorized
        destination: authorized
        rule: (condition.equal (basic.field "is_authorized") (boolean.tautology))

  authorized:
    name: authorized
    action: authorize_order
    transitions:
      order_partially_paid:
        name: order is partially paid
        destination: partially_paid
        rule: (boolean.tautology)
      order_fully_paid:
        name: order is fully paid
        destination: paid
        rule: (boolean.tautology)

    ...
Copy after login
Copy after login

However, I am still working on it now, and should make it in the next release. Meanwhile, it is also capable of doing something similar to map and reduce if every state has action defined. Feel free to check the project for development progress. And both genruler and genstates are now up on PyPI, yay!

Now, how about the AI thing?

I downloaded Codeium Windsurf after the library is somewhat usable. I eventually used it to strip hy dependency off from genruler, and added documentation and README to the project. For genstates, I used cascade to generate documentation, README, as well as tests. Overall, it feels like I have a mid to senior programmer around to help me out with tasks I would assign to my interns or even juniors.

Most of the core logic still comes from my end, as intelligent as the language model is at the moment, they still make mistakes here and there and hence, require supervision. I also experimented with qwen2.5-coder:7b model, and it works rather well, albeit rather slowly due to my crappy workstation. I find the price Codeium asks for is fair, if I am to build my own product and managed to make money out of it.

While the generation parts works fine, but writing actual code is not as great. I am not sure if Pylance is working properly there, considered it is proprietary, or whether it is due to the completion magic windsurf does, my editor is no longer able to do auto-import of libraries when I write code. For example, when I auto-completes reduce() function in my code, in vscode it would automagically insert from functools import reduce into my code. However, this is not the case in windsurf, which makes it a little bit irritating. However, considering this is new, the coding experience should be fixed over time.

On the other hand, I am still in search of a lighter editor, and zed does catch my attention. However, since my Surface Book 2 died recently, I am only left with a Samsung Galaxy Tab S7FE when I am away from my home office. Hence, vscode with a web frontend (and it is surprisingly usable) connected to my workstation is still my main editor (it even works with the neovim extension).

Generative AI powered by LLM is rapidly changing our lives, there’s no point in resisting it. However, IMHO, we should also have some self-restrain to not use it for everything. It really should be used as a complement to innovative or creative work, not a replacement to innovation and creativity.

We should also know what it is outputting, instead of blindly accept what it does. For example, in genruler, I made it improve my original README with more extensive examples. Instead of accepting it as-is, I made it to generate tests for all the examples it generates in the README, so the example code passes and works as I intended.

Overall, yea, I do think these Generative AI enhanced editors do worth the money they ask for. In the end, these are tools, they are meant to offer assistance to work, not replacing the person hitting the keyboard.

The above is the detailed content of Building state machine library with help from AI tools. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1669
14
PHP Tutorial
1273
29
C# Tutorial
1256
24
Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python vs. C  : Exploring Performance and Efficiency Python vs. C : Exploring Performance and Efficiency Apr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Learning Python: Is 2 Hours of Daily Study Sufficient? Learning Python: Is 2 Hours of Daily Study Sufficient? Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Which is part of the Python standard library: lists or arrays? Which is part of the Python standard library: lists or arrays? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python vs. C  : Understanding the Key Differences Python vs. C : Understanding the Key Differences Apr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python for Web Development: Key Applications Python for Web Development: Key Applications Apr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

See all articles