


Diagram-as-Code: Creating Dynamic and Interactive Documentation for Visual Content
In this article, I will guide you step by step to create dynamic and interactive visual documentation using Diagram-as-Code tools. Instead of static images, we will generate diagrams programmatically, ensuring they are always up-to-date and easy to maintain.
? Diagram as code
Diagram as Code is an approach that allows you to create diagrams through code instead of traditional graphic tools. Instead of manually building diagrams, you can write code in a text file to define the structure, components, and connections of your diagrams.
This code is then translated into graphical images, making it easier to integrate and document in software projects, where it is especially useful for creating and updating architectural and flow diagrams programmatically.
What is Diagrams?
Diagrams is a ?Python library that implements the Diagram as Code approach, enabling you to create architectural infrastructure diagrams and other types of diagrams through code. With Diagrams, you can easily define cloud infrastructure components (such as AWS, Azure, and GCP), network elements, software services, and more, all with just a few lines of code.
? Benefits of Diagram-as-Code
- ? Representation of Diagrams as Code: Create and update diagrams directly from code, ensuring maintainability in agile projects.
- ? Automated Documentation: Generate visuals from code, keeping diagrams aligned with the current architecture.
- ? Change Control: Track diagram modifications over time.
- ? Enhanced Clarity: Improve understanding of complex systems with clear, shared visuals.
- ✏️ Customizable: Represent cloud infrastructures, workflows, or data pipelines with flexible and tailored visuals.
Tutorial
? Library Installation
I was currently using version '0.23.4' for this tutorial.
!pip install diagrams=='0.23.4'
? Diagrams: Nodes
The library allows you to create architectural diagrams programmatically, using nodes to represent different infrastructure components and services.
Node Types
Nodes in Diagrams represent components from different cloud service providers as well as other architectural elements. Here are the main categories of available nodes:
- ☁️ Cloud Providers: AWS (Amazon Web Services), Azure, GCP, IBM Cloud, Alibaba Cloud, Oracle Cloud, DigitalOcean, among others.
- ? On-Premise: Represents the infrastructure physically located on the company's premises.
- ? Kubernetes (K8S): Container orchestration system to automate the deployment, scaling, and management of containerized applications (represented by a ship's wheel, symbolizing control and navigation).
- ?️ OpenStack: Open-source software platform for creating and managing public and private clouds.
- ? Generic: Generic nodes that can represent any component not specifically covered by provider-specific nodes (crossed tools, representing different tools in one category).
- ☁️ SaaS (Software as a Service): Represents applications delivered as a service over the internet, such as Snowflake, chat services (Slack, Teams, Telegram, among others), security (e.g., Okta), or social networks (crossed out phone and cloud for the SaaS concept).
- ? Custom: Allows users to customize their diagrams using PNG icons stored in a specific folder. This is useful for representing infrastructure components not covered by the default nodes (crossed-out custom tools).
? Programming Languages
The Diagrams library allows you to use different nodes to represent various programming languages. These nodes are helpful for indicating in your diagrams if any part of your architecture utilizes scripts or components developed in a specific programming language.
Below, we will showcase all the available languages in the library. If any language is missing, you can add custom nodes by uploading the corresponding logo into a specific folder.
!pip install diagrams=='0.23.4'
☁️ AWS (Amazon Web Services)
We can use Amazon nodes, which are organized into several categories, such as:
- Analytics and Business: aws.analytics, aws.business
- Compute and Storage: aws.compute, aws.storage, aws.cost
- Database and DevTools: aws.database, aws.devtools
- Integration and Management: aws.integration, aws.management
- Machine Learning and Mobile: aws.ml, aws.mobile
- Networking and Security: aws.network, aws.security
- Others: aws.blockchain, aws.enduser, aws.engagement, aws.game, aws.general, aws.iot, aws.media, aws.migration, aws.quantum, aws.robotics, aws.satellite
Next, we will represent one of these categories to visualize the available nodes within aws.database.
!pip install diagrams=='0.23.4'
☁️ Use Case
Now, let's create a simple blueprint that corresponds to importing a dataset and training a machine learning model on AWS.
# Create the diagram object with diagrams.Diagram("Programming Languages", show=False, filename="languages"): # Get all the languages available in this library languages = [item for item in dir(diagrams.programming.language) if item[0] != '_'] # Divide the representation in two lines mid_index = len(languages) // 2 first_line = languages[:mid_index] second_line = languages[mid_index:] # Add nodes in the first row prev_node = None for language in first_line: current_node = eval(f"diagrams.programming.language.{language}(language)") if prev_node is not None: prev_node >> current_node prev_node = current_node # Add nodes in the second row prev_node = None for language in second_line: current_node = eval(f"diagrams.programming.language.{language}(language)") if prev_node is not None: prev_node >> current_node prev_node = current_node Image("languages.png")
Repository
Below are the link to all the code, if you find it useful, you can leave a star ⭐️ and follow me to receive notifications of new articles. This will help me grow in the tech community and create more content.
r0mymendez
/
diagram-as-code
A tutorial on how to create a documentation project using the 'Doc as diagram' methodology
? Diagram-as-Code: Creating Dynamic and Interactive Documentation for Visual Content
Diagram as Code is an approach that allows you to create diagrams through code instead of traditional graphic tools. Instead of manually building diagrams, you can write code in a text file to define the structure, components, and connections of your diagrams.
This code is then translated into graphical images, making it easier to integrate and document in software projects, where it is especially useful for creating and updating architectural and flow diagrams programmatically.
What is Diagrams?
Diagrams is a ?Python library that implements the Diagram as Code approach, enabling you to create architectural infrastructure diagrams and other types of diagrams through code. With Diagrams, you can easily define cloud infrastructure components (such as AWS, Azure, and GCP), network elements, software services, and more, all with just a few lines of code.
? Benefits of Diagram-as-Code
- ?…
If you want to see how to implement a documentation site using this pipeline you can read the article I published in the following link
? References
- Diagrams: https://diagrams.mingrammer.com/
The above is the detailed content of Diagram-as-Code: Creating Dynamic and Interactive Documentation for Visual Content. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.
