To Store a SHA1 Hash in MySQL: VARCHAR or BINARY?
Storing SHA1 Hash Values in MySQL: VARCHAR vs. BINARY
When storing the result of a SHA1 hash in a MySQL database, the appropriate field type and length must be carefully considered. Contrary to common practice, using a VARCHAR field for this purpose is inefficient.
VARCHAR vs. BINARY
A SHA1 hash is always 160 bits long. VARCHAR fields are designed for variable-length data, but they introduce an overhead of one byte for the length of the field. Therefore, using VARCHAR for a fixed-length value, such as a SHA1 hash, is unnecessary.
Binary fields, on the other hand, store binary data without any overhead. They are ideal for fixed-length values like SHA1 hashes.
Character Representation
SHA1 hashes are typically represented as hexadecimal strings, which use 4 bits per character. To store the hexadecimal representation of a SHA1 hash in a VARCHAR field, it would require 160/4 = 40 characters. However, binary fields use 8 bits per character, allowing the same hash to be stored in a 160/8 = 20-character field.
Recommended Approach
It is recommended to use BINARY(20) for storing SHA1 hash values in MySQL. This field type eliminates the overhead associated with VARCHAR and allows the hash to be stored efficiently. Additionally, the UNHEX function can be used to convert the hexadecimal representation of the hash to binary before storing it in the database.
Storage Comparison
A comparison of storage requirements reveals that BINARY(20) is more efficient than CHAR(40) for storing SHA1 hash values. For example, with millions of records, BINARY(20) requires approximately 44.56M of storage, while CHAR(40) requires 64.57M. This difference becomes even more pronounced with larger datasets.
The above is the detailed content of To Store a SHA1 Hash in MySQL: VARCHAR or BINARY?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.
