


How can the accuracy of parameter computation in complex kinematic systems be further improved?
Increasing Accuracy of Solution of Transcendental Equation
Problem: Given a complex kinematic system with parameters that are difficult to measure accurately, the goal is to compute these parameters from a set of measurements using auto-calibration. The objective is to increase the accuracy of the computed parameters.
Approximation Method: The solution utilizes an approximation class that iteratively searches for the minimal deviation point for a given variable within a specified range and step size. The solution is further refined by reducing the range and step size near the minimal point, recursively increasing accuracy.
Current Accuracy: Simulation results show that the accuracy is still not sufficient, with errors ranging from 0.1 mm to 0.5 mm. The number of measurement points and recursion levels have limited effects.
Possible Solutions:
1. Iterative Approximation: Consider implementing a more sophisticated iterative approximation algorithm, such as the Levenberg-Marquardt algorithm, which can potentially achieve higher precision.
2. Weighted Deviations: Explore weighting the deviations based on angular distance from 0 degrees. This may help improve accuracy by emphasizing the more reliable measurements.
3. Different Model: Re-evaluate the kinematic model. The proposed transcendental equation may not be the most accurate representation of the system. Consider alternative models that better capture the physics of the system.
4. Improved Measurement Techniques: Focus on improving the measurement accuracy of y0, z0, and a0. This could involve using more precise sensors or calibrating the existing ones.
5. Mechanical Improvements: Examine the mechanical design of the system for possible sources of error. Address any issues such as vibrations or tube eccentricity.
6. Additional Data Points: Explore increasing the number of measurement points, but only up to a point where stability is maintained. Too many points can lead to instabilities in the results.
7. Alternative Approaches: Consider exploring different approaches to the problem, such as utilizing machine learning algorithms or optimization techniques like genetic algorithms.
Edit:
- Further Accuracy Improvement: Estimating y1, which corresponds to the intersection of the arm and tube movement axis, and using it to calculate a0, z0, and y0 has significantly enhanced accuracy, with precision now around 0.03 mm.
- Explanation of Approximation Search: The approximation search narrows down the range of a single variable by incrementally adjusting its value and selecting the step that produces the smallest error. This process is repeated recursively, reducing the range and step size to gradually increase accuracy.
The above is the detailed content of How can the accuracy of parameter computation in complex kinematic systems be further improved?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

C language data structure: The data representation of the tree and graph is a hierarchical data structure consisting of nodes. Each node contains a data element and a pointer to its child nodes. The binary tree is a special type of tree. Each node has at most two child nodes. The data represents structTreeNode{intdata;structTreeNode*left;structTreeNode*right;}; Operation creates a tree traversal tree (predecision, in-order, and later order) search tree insertion node deletes node graph is a collection of data structures, where elements are vertices, and they can be connected together through edges with right or unrighted data representing neighbors.

The truth about file operation problems: file opening failed: insufficient permissions, wrong paths, and file occupied. Data writing failed: the buffer is full, the file is not writable, and the disk space is insufficient. Other FAQs: slow file traversal, incorrect text file encoding, and binary file reading errors.

C language functions are the basis for code modularization and program building. They consist of declarations (function headers) and definitions (function bodies). C language uses values to pass parameters by default, but external variables can also be modified using address pass. Functions can have or have no return value, and the return value type must be consistent with the declaration. Function naming should be clear and easy to understand, using camel or underscore nomenclature. Follow the single responsibility principle and keep the function simplicity to improve maintainability and readability.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

The C language function name definition includes: return value type, function name, parameter list and function body. Function names should be clear, concise and unified in style to avoid conflicts with keywords. Function names have scopes and can be used after declaration. Function pointers allow functions to be passed or assigned as arguments. Common errors include naming conflicts, mismatch of parameter types, and undeclared functions. Performance optimization focuses on function design and implementation, while clear and easy-to-read code is crucial.

C language functions are reusable code blocks. They receive input, perform operations, and return results, which modularly improves reusability and reduces complexity. The internal mechanism of the function includes parameter passing, function execution, and return values. The entire process involves optimization such as function inline. A good function is written following the principle of single responsibility, small number of parameters, naming specifications, and error handling. Pointers combined with functions can achieve more powerful functions, such as modifying external variable values. Function pointers pass functions as parameters or store addresses, and are used to implement dynamic calls to functions. Understanding function features and techniques is the key to writing efficient, maintainable, and easy to understand C programs.

Algorithms are the set of instructions to solve problems, and their execution speed and memory usage vary. In programming, many algorithms are based on data search and sorting. This article will introduce several data retrieval and sorting algorithms. Linear search assumes that there is an array [20,500,10,5,100,1,50] and needs to find the number 50. The linear search algorithm checks each element in the array one by one until the target value is found or the complete array is traversed. The algorithm flowchart is as follows: The pseudo-code for linear search is as follows: Check each element: If the target value is found: Return true Return false C language implementation: #include#includeintmain(void){i

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.
