Home Backend Development Python Tutorial How to Explode Nested Lists into Individual Rows in a Pandas Dataframe?

How to Explode Nested Lists into Individual Rows in a Pandas Dataframe?

Nov 12, 2024 am 03:10 AM

How to Explode Nested Lists into Individual Rows in a Pandas Dataframe?

Exploding Nested Lists Into Individual Rows in a Pandas Dataframe

In the realm of data manipulation with pandas, the need often arises to restructure data stored as nested lists into individual rows. Consider a dataframe where the "nearest_neighbors" column contains lists of values. The objective is to "explode" these lists, creating separate rows for each value within the list.

Pandas 0.25 Simplifies List Exploding with explode() Method

For pandas versions 0.25 and later, expanding lists in columns is significantly simplified with the introduction of the explode() method. To demonstrate its functionality, let's recreate the example dataframe:

import pandas as pd

# Original DataFrame
df = pd.DataFrame({'name': ['A.J. Price'] * 3, 
                    'opponent': ['76ers', 'blazers', 'bobcats'], 
                    'nearest_neighbors': [['Zach LaVine', 'Jeremy Lin', 'Nate Robinson', 'Isaia']] * 3})

# Set the index for easier reference
df = df.set_index(['name', 'opponent'])
Copy after login

Exploding the Nested Lists

Using the explode() method, we can split the "nearest_neighbors" column by its list elements, creating separate rows for each value:

# Explode the list-like column
df_exploded = df.explode('nearest_neighbors')
Copy after login

Output after Exploding

print(df_exploded)
Copy after login
                    nearest_neighbors
name       opponent                  
A.J. Price 76ers          Zach LaVine
           76ers           Jeremy Lin
           76ers        Nate Robinson
           76ers                Isaia
           blazers        Zach LaVine
           blazers         Jeremy Lin
           blazers      Nate Robinson
           blazers              Isaia
           bobcats        Zach LaVine
           bobcats         Jeremy Lin
           bobcats      Nate Robinson
           bobcats              Isaia
Copy after login

As you can see, each value from the list in the "nearest_neighbors" column is now represented as a separate row within its corresponding opponent index.

Other Methods for List Expansion

For pandas versions prior to 0.25, there were other approaches to expand lists in columns. These methods required a combination of operations like apply, lambda, and list comprehension. However, with the introduction of the explode() method, these more complex approaches are no longer necessary.

The above is the detailed content of How to Explode Nested Lists into Individual Rows in a Pandas Dataframe?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1653
14
PHP Tutorial
1251
29
C# Tutorial
1224
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: The Power of Versatile Programming Python: The Power of Versatile Programming Apr 17, 2025 am 12:09 AM

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

See all articles