


Build a Text Extractor App with Python Code Under Lines Using Gradio and Hugging Face
original post: https://baxin.netlify.app/build-text-extractor-python-under-30-lines/
Extracting text from images, known as Optical Character Recognition (OCR), is a valuable feature for applications in document processing, data extraction, and accessibility. In this guide, we will create an OCR app using Python libraries like pytesseract for OCR, Pillow for image processing, and Gradio for building an interactive UI. We’ll deploy this app on Hugging Face Spaces.
Prerequisites
Before starting, you’ll need a Hugging Face account and basic familiarity with Docker.
Step-by-Step Guide
Step 1: Create a Hugging Face Space
- Navigate to Hugging Face Spaces: Log in to Hugging Face and go to the "Spaces" section.
-
Create a New Space:
- Click on "New Space."
- Name your space (e.g., image-text-extractor).
- Choose Gradio as the SDK and set the visibility (public or private).
- Click "Create Space."
Step 2: Create a Dockerfile
To deploy on Hugging Face Spaces with required system dependencies, such as Tesseract for OCR, we need a Dockerfile that configures the environment.
Create a Dockerfile with the following content:
# Use an official Python runtime as a parent image FROM python:3.12 ENV PIP_ROOT_USER_ACTION=ignore # Set the working directory in the container WORKDIR $HOME/app # Install system dependencies RUN apt-get update && apt-get install -y RUN apt-get install -y tesseract-ocr RUN apt-get install -y libtesseract-dev RUN apt-get install -y libgl1-mesa-glx RUN apt-get install -y libglib2.0-0 RUN pip install --upgrade pip # Copy requirements and install dependencies COPY requirements.txt requirements.txt RUN pip install --no-cache-dir -r requirements.txt # Copy the app code COPY app.py ./ # Expose the port for Gradio EXPOSE 7860 # Run the application CMD ["python", "app.py"]
Step 3: Create the OCR Application
- Create a file called app.py with the following content:
import gradio as gr import pytesseract from PIL import Image import os def extract_text(image_path): if not image_path: return "No image uploaded. Please upload an image." if not os.path.exists(image_path): return f"Error: File not found at {image_path}" try: img = Image.open(image_path) text = pytesseract.image_to_string(img) return text if text.strip() else "No text detected in the image." except Exception as e: return f"An error occurred: {str(e)}" iface = gr.Interface( fn=extract_text, inputs=gr.Image(type="filepath", label="Upload an image"), outputs=gr.Textbox(label="Extracted Text"), title="Image Text Extractor", description="Upload an image and extract text from it using OCR." ) iface.launch(server_name="0.0.0.0", server_port=7860)
- Create a requirements.txt file to specify the dependencies:
gradio pytesseract Pillow
This setup includes:
- Image Upload: gr.Image(type="filepath") allows users to upload images as file paths, which pytesseract processes.
- Text Extraction: pytesseract.image_to_string extracts text from the image.
- User Interface: Gradio generates a simple UI for users to upload an image and view extracted text.
Step 4: Push All Files to Hugging Face Spaces
With all files created, push them to your Hugging Face Space
The above is the detailed content of Build a Text Extractor App with Python Code Under Lines Using Gradio and Hugging Face. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.
