Table of Contents
Making objects JSON serializable with the regular encoder
Magick Lies Here
Deserializing
Home Backend Development Python Tutorial How can I make custom objects JSON serializable without subclassing `json.JSONEncoder`?

How can I make custom objects JSON serializable without subclassing `json.JSONEncoder`?

Oct 30, 2024 pm 08:25 PM

How can I make custom objects JSON serializable without subclassing `json.JSONEncoder`?

Making objects JSON serializable with the regular encoder

The default way to serialize custom non-serializable objects to JSON is to subclass json.JSONEncoder and pass a custom encoder to json.dumps(). This typically looks like the following:

<code class="python">class CustomEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, Foo):
            return obj.to_json()

        return json.JSONEncoder.default(self, obj)

print(json.dumps(obj, cls=CustomEncoder))</code>
Copy after login

However, what if you want to make an object serializable with the default encoder? After reviewing the json module's source code, it appears that extending the encoder directly will not meet this requirement.

Instead, you can use a technique called "monkey-patching" within your package's __init__.py initialization script. This affects all subsequent JSON module serializations since modules are generally loaded only once, and the result is cached in sys.modules.

The patch would modify the default JSON encoder's default method to check for a unique "to_json" method and utilize it to encode the object if found.

Here's an example implemented as a standalone module for simplicity:

<code class="python"># Module: make_json_serializable.py

from json import JSONEncoder

def _default(self, obj):
    return getattr(obj.__class__, "to_json", _default.default)(obj)

_default.default = JSONEncoder.default  # Save unmodified default.
JSONEncoder.default = _default  # Replace it.</code>
Copy after login

Using this patch is simple: just import the module to apply the monkey-patch.

<code class="python"># Sample client script

import json
import make_json_serializable  # apply monkey-patch

class Foo(object):
    def __init__(self, name):
        self.name = name

    def to_json(self):  # New special method.
        """Convert to JSON format string representation."""
        return '{"name": "%s"}' % self.name

foo = Foo('sazpaz')
print(json.dumps(foo))  # -> '{"name": "sazpaz"}'</code>
Copy after login

To retain object type information, the to_json method can include it in the returned string:

<code class="python">def to_json(self):
    """Convert to JSON format string representation."""
    return '{"type": "%s", "name": "%s"}' % (self.__class__.__name__, self.name)</code>
Copy after login

This produces JSON that includes the class name:

{"type": "Foo", "name": "sazpaz"}
Copy after login

Magick Lies Here

An even more powerful approach is to have the replacement default method serialize most Python objects automatically, including user-defined class instances, without requiring a unique method.

After researching several alternatives, the following approach based on pickle appears closest to this ideal:

<code class="python"># Module: make_json_serializable2.py

from json import JSONEncoder
import pickle

def _default(self, obj):
    return {"_python_object": pickle.dumps(obj)}

JSONEncoder.default = _default  # Replace with the above.</code>
Copy after login

While not everything can be pickled (e.g., extension types), pickle provides methods to handle them via a protocol using unique methods. However, this approach covers more cases.

Deserializing

Using the pickle protocol simplifies reconstructing the original Python object by providing a custom object_hook function argument to json.loads() when encountering a "_python_object" key in the dictionary.

<code class="python">def as_python_object(dct):
    try:
        return pickle.loads(str(dct['_python_object']))
    except KeyError:
        return dct

pyobj = json.loads(json_str, object_hook=as_python_object)</code>
Copy after login

This can be simplified to a wrapper function:

<code class="python">json_pkloads = functools.partial(json.loads, object_hook=as_python_object)

pyobj = json_pkloads(json_str)</code>
Copy after login

This code does not work in Python 3 because json.dumps() returns a bytes object that JSONEncoder cannot handle. However, the approach remains valid with the following modification:

<code class="python">def _default(self, obj):
    return {"_python_object": pickle.dumps(obj).decode('latin1')}

def as_python_object(dct):
    try:
        return pickle.loads(dct['_python_object'].encode('latin1'))
    except KeyError:
        return dct</code>
Copy after login

The above is the detailed content of How can I make custom objects JSON serializable without subclassing `json.JSONEncoder`?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1669
14
PHP Tutorial
1273
29
C# Tutorial
1256
24
Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python vs. C  : Exploring Performance and Efficiency Python vs. C : Exploring Performance and Efficiency Apr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Learning Python: Is 2 Hours of Daily Study Sufficient? Learning Python: Is 2 Hours of Daily Study Sufficient? Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Which is part of the Python standard library: lists or arrays? Which is part of the Python standard library: lists or arrays? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python vs. C  : Understanding the Key Differences Python vs. C : Understanding the Key Differences Apr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python for Web Development: Key Applications Python for Web Development: Key Applications Apr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

See all articles