How can I add new statements to the syntax of Python?
Is it possible to add new statements to Python's syntax?
Yes, it is possible to add new statements to Python's syntax. However, this requires modifying the Python interpreter's code.
How can new statements be added to Python's syntax?
You can modify the grammar file (Grammar/Grammar) to add a definition for the new statement and modify the AST generation code (Python/ast.c) to convert the new parse tree node into an AST node. Then, modify the bytecode compilation code (Python/compile.c) to compile the new statement into bytecode. Finally, modify the symbol table generation code (Python/symtable.c) to handle the new statement.
Example:
To add an "until" statement that is the complement of "while":
- Add a definition for the "until" statement to Grammar/Grammar:
<code class="text">compound_stmt: if_stmt | while_stmt | until_stmt | for_stmt | try_stmt | with_stmt | funcdef | classdef | decorated until_stmt: 'until' test ':' suite</code>
- Add an AST node for the "until" statement in Python/ast.c:
<code class="c">| Until(expr test, stmt* body)</code>
- Implement the ast_for_until_stmt() function to create an AST node for the "until" statement:
<code class="c">static stmt_ty ast_for_until_stmt(struct compiling *c, const node *n) { /* until_stmt: 'until' test ':' suite */ REQ(n, until_stmt); if (NCH(n) == 4) { expr_ty expression; asdl_seq *suite_seq; expression = ast_for_expr(c, CHILD(n, 1)); if (!expression) return NULL; suite_seq = ast_for_suite(c, CHILD(n, 3)); if (!suite_seq) return NULL; return Until(expression, suite_seq, LINENO(n), n->n_col_offset, c->c_arena); } PyErr_Format(PyExc_SystemError, "wrong number of tokens for 'until' statement: %d", NCH(n)); return NULL; }</code>
- Implement the compiler_until() function to compile the "until" statement into bytecode:
<code class="c">static int compiler_until(struct compiler *c, stmt_ty s) { basicblock *loop, *end, *anchor = NULL; int constant = expr_constant(s->v.Until.test); if (constant == 1) { return 1; } loop = compiler_new_block(c); end = compiler_new_block(c); if (constant == -1) { anchor = compiler_new_block(c); if (anchor == NULL) return 0; } if (loop == NULL || end == NULL) return 0; ADDOP_JREL(c, SETUP_LOOP, end); compiler_use_next_block(c, loop); if (!compiler_push_fblock(c, LOOP, loop)) return 0; if (constant == -1) { VISIT(c, expr, s->v.Until.test); ADDOP_JABS(c, POP_JUMP_IF_TRUE, anchor); } VISIT_SEQ(c, stmt, s->v.Until.body); ADDOP_JABS(c, JUMP_ABSOLUTE, loop); if (constant == -1) { compiler_use_next_block(c, anchor); ADDOP(c, POP_BLOCK); } compiler_pop_fblock(c, LOOP, loop); compiler_use_next_block(c, end); return 1; }</code>
- Modify the symtable_visit_stmt() function in Python/symtable.c to handle "until" statements:
<code class="c">case While_kind: VISIT(st, expr, s->v.While.test); VISIT_SEQ(st, stmt, s->v.While.body); if (s->v.While.orelse) VISIT_SEQ(st, stmt, s->v.While.orelse); break; case Until_kind: VISIT(st, expr, s->v.Until.test); VISIT_SEQ(st, stmt, s->v.Until.body); break;</code>
Note: This is a high-level overview. Refer to the quoted article for more detailed steps and explanations.
The above is the detailed content of How can I add new statements to the syntax of Python?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.
