Table of Contents
Combining Pandas Data Frames using Merge on a Common Column
Home Backend Development Python Tutorial How to Resolve Column Overlap Errors While Combining Pandas Data Frames with `join()`?

How to Resolve Column Overlap Errors While Combining Pandas Data Frames with `join()`?

Oct 27, 2024 am 06:07 AM

How to Resolve Column Overlap Errors While Combining Pandas Data Frames with `join()`?

Combining Pandas Data Frames using Merge on a Common Column

When working with data analysis tasks, it is often necessary to combine data from multiple sources into a single data frame. Pandas provides several methods for performing data frame joins, one of which is merge() that enables us to combine data frames based on common columns.

Suppose we have two data frames:

restaurant_ids_dataframe:

Column Name Data Type
business_id int
categories object
city object
full_address object
latitude float
longitude float
name object
neighborhoods object
open bool
review_count int
stars float
state object
type object

restaurant_review_frame:

Column Name Data Type
business_id int
date object
review_id int
stars float
text object
type object
user_id int
votes int

The goal is to combine these data frames into a single data frame using the DataFrame.join() method. We would typically expect the join to be performed on the common column business_id. However, when attempting the following line of code:

restaurant_review_frame.join(other=restaurant_ids_dataframe, on='business_id', how='left')
Copy after login

we receive an error:

Exception: columns overlap: Index([business_id, stars, type], dtype=object)
Copy after login

To resolve this issue, we should utilize the merge() method instead, specifying the common column in the on parameter. The merge() method is designed to handle overlapping columns and combine the data frames accordingly. The syntax would be:

<code class="python">import pandas as pd
pd.merge(restaurant_ids_dataframe, restaurant_review_frame, on='business_id', how='outer')</code>
Copy after login

Here, the how parameter defines the type of join to be performed. In this case, we have used outer, which performs a full outer join, combining all rows from both data frames.

Additionally, we can specify the suffixes for the merged columns using the suffixes parameter, allowing us to customize the column names in the resulting data frame. For example, to suffix the columns as star_restaurant_id and star_restaurant_review, we can use:

<code class="python">pd.merge(restaurant_ids_dataframe, restaurant_review_frame, on='business_id', how='outer', suffixes=('_restaurant_id', '_restaurant_review'))</code>
Copy after login

The merge() method offers a comprehensive set of parameters that provide fine-grained control over the join operation, enabling efficient and accurate data frame combinations.

The above is the detailed content of How to Resolve Column Overlap Errors While Combining Pandas Data Frames with `join()`?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1655
14
PHP Tutorial
1252
29
C# Tutorial
1226
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles