Home Backend Development Python Tutorial **Flatten vs. Ravel: When Should I Use Which NumPy Function?**

**Flatten vs. Ravel: When Should I Use Which NumPy Function?**

Oct 25, 2024 pm 02:12 PM

**Flatten vs. Ravel: When Should I Use Which NumPy Function?**

Understanding the Differences Between Numpy's Flatten and Ravel Functions

When working with multidimensional arrays in NumPy, you may encounter scenarios where you need to convert them into a one-dimensional form. This is where the flatten() and ravel() functions come into play. However, despite their similar outcomes, they employ distinct methods and have unique implications for performance and memory management.

Similarities:

Both flatten() and ravel() produce a flattened array, as demonstrated by the provided code example:

import numpy as np
y = np.array(((1,2,3),(4,5,6),(7,8,9)))
print(y.flatten())
[1   2   3   4   5   6   7   8   9]
print(y.ravel())
[1   2   3   4   5   6   7   8   9]
Copy after login

Differences:

  • Memory Allocation: flatten() always creates a copy of the original array, while ravel() produces a view of the original array whenever possible. This implies that modifying the returned array from flatten() has no impact on the original array, whereas changes made to the array returned by ravel() will be reflected in the original.
  • Performance: Ravel() tends to be faster than flatten() because it avoids memory copying and makes use of contiguous views. This can be advantageous when dealing with large arrays.
  • Stride Handling: reshape((-1,)) offers another option for flattening arrays, but it returns a view instead of a copy like flatten(). However, it may not guarantee contiguity, which can affect performance.

Conclusion:

Understanding the subtle nuances between flatten() and ravel() equips you with the knowledge to make informed decisions about when to employ each function. If preserving the original array is crucial or if you need to create a new copy for further processing, flatten() is the preferred choice. On the other hand, when speed is of the essence and modifying the flattened array is acceptable, ravel() provides a more efficient solution.

The above is the detailed content of **Flatten vs. Ravel: When Should I Use Which NumPy Function?**. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to solve the permissions problem encountered when viewing Python version in Linux terminal? How to solve the permissions problem encountered when viewing Python version in Linux terminal? Apr 01, 2025 pm 05:09 PM

Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? How to efficiently copy the entire column of one DataFrame into another DataFrame with different structures in Python? Apr 01, 2025 pm 11:15 PM

When using Python's pandas library, how to copy whole columns between two DataFrames with different structures is a common problem. Suppose we have two Dats...

How does Uvicorn continuously listen for HTTP requests without serving_forever()? How does Uvicorn continuously listen for HTTP requests without serving_forever()? Apr 01, 2025 pm 10:51 PM

How does Uvicorn continuously listen for HTTP requests? Uvicorn is a lightweight web server based on ASGI. One of its core functions is to listen for HTTP requests and proceed...

How to solve permission issues when using python --version command in Linux terminal? How to solve permission issues when using python --version command in Linux terminal? Apr 02, 2025 am 06:36 AM

Using python in Linux terminal...

How to teach computer novice programming basics in project and problem-driven methods within 10 hours? How to teach computer novice programming basics in project and problem-driven methods within 10 hours? Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to get news data bypassing Investing.com's anti-crawler mechanism? How to get news data bypassing Investing.com's anti-crawler mechanism? Apr 02, 2025 am 07:03 AM

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...

See all articles