Home Database Mysql Tutorial How to Recursively Query a Tree Structure in MySQL to Find Descendants of a Parent Node?

How to Recursively Query a Tree Structure in MySQL to Find Descendants of a Parent Node?

Oct 24, 2024 am 04:20 AM

How to Recursively Query a Tree Structure in MySQL to Find Descendants of a Parent Node?

Recursing a Tree Structure in MySQL

Managing hierarchical data can be a challenge in relational databases, especially when recursive querying is required. In MySQL, we have a specific problem: how to efficiently retrieve all descendants of a given parent location, no matter the depth of the hierarchy.

The Problem:

Consider the following database schema for locations:

location (id, ....)
location_parent (location_id, parent_id)
Copy after login

The location table stores location information, while the location_parent table defines the parent-child relationship between locations.

Suppose we have a location with ID 5. We want to retrieve all its descendants, including those that are multiple levels deep.

Initial Solution:

One approach to recursive querying is to use a self-join as follows:

<code class="sql">SELECT DISTINCT l.id
FROM location AS l
LEFT JOIN location_parent AS lp ON l.id = lp.child_id
WHERE lp.parent_id = 5
;</code>
Copy after login

This query will retrieve the direct children of location 5. However, for deeper descendants, we need to repeat the query multiple times, each time using the results of the previous query as the input for the next. This method is inefficient and impractical for large hierarchical structures.

Recommended Solution:

The recommended solution to this problem is to use the recursive Common Table Expression (CTE). A CTE is a temporary table that can be defined and referenced within a single query.

<code class="sql">WITH RECURSIVE descendants AS (
    SELECT id, parent_id
    FROM location_parent
    WHERE parent_id = 5
    UNION ALL
    SELECT lp.child_id, lp.parent_id
    FROM descendants AS d
    JOIN location_parent AS lp ON d.id = lp.parent_id
)
SELECT id
FROM descendants
;</code>
Copy after login

This query creates a recursive CTE called descendants, which starts with the direct children of location 5. The UNION ALL clause then adds the children of the previously selected descendants, effectively expanding the query to include all descendants at any depth.

The second part of the query selects the id column from the descendants CTE, which gives us the list of all descendant locations. This approach is much more efficient than the self-join method and can handle hierarchical structures of any depth.

The above is the detailed content of How to Recursively Query a Tree Structure in MySQL to Find Descendants of a Parent Node?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

When might a full table scan be faster than using an index in MySQL? When might a full table scan be faster than using an index in MySQL? Apr 09, 2025 am 12:05 AM

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Can I install mysql on Windows 7 Can I install mysql on Windows 7 Apr 08, 2025 pm 03:21 PM

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

Explain InnoDB Full-Text Search capabilities. Explain InnoDB Full-Text Search capabilities. Apr 02, 2025 pm 06:09 PM

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

MySQL: Simple Concepts for Easy Learning MySQL: Simple Concepts for Easy Learning Apr 10, 2025 am 09:29 AM

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

Difference between clustered index and non-clustered index (secondary index) in InnoDB. Difference between clustered index and non-clustered index (secondary index) in InnoDB. Apr 02, 2025 pm 06:25 PM

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values ​​and pointers to data rows, and is suitable for non-primary key column queries.

Can mysql and mariadb coexist Can mysql and mariadb coexist Apr 08, 2025 pm 02:27 PM

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

The relationship between mysql user and database The relationship between mysql user and database Apr 08, 2025 pm 07:15 PM

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

RDS MySQL integration with Redshift zero ETL RDS MySQL integration with Redshift zero ETL Apr 08, 2025 pm 07:06 PM

Data Integration Simplification: AmazonRDSMySQL and Redshift's zero ETL integration Efficient data integration is at the heart of a data-driven organization. Traditional ETL (extract, convert, load) processes are complex and time-consuming, especially when integrating databases (such as AmazonRDSMySQL) with data warehouses (such as Redshift). However, AWS provides zero ETL integration solutions that have completely changed this situation, providing a simplified, near-real-time solution for data migration from RDSMySQL to Redshift. This article will dive into RDSMySQL zero ETL integration with Redshift, explaining how it works and the advantages it brings to data engineers and developers.

See all articles