Simulating the Monty Hall problem using Streamlit
The Monty Hall problem is a classic probability puzzle that has intrigued mathematicians and casual thinkers alike. It presents a scenario where a contestant must choose one of three doors, behind one of which is a car ?(the prize), while the other two doors hide goats ?. After the contestant makes their initial choice, the host, who knows what is behind each door, opens one of the remaining doors to reveal a goat. The contestant is then given the option to either stick with their original choice or switch to the other unopened door?.
Although intuition would suggest that switching the door would have no effect on the probability of winning a car ( 1/2 probability of success either by switching or retaining), the truth is that switching the door would result in around 2/3 (67%) chance of success, while remaining with the original door would only result in around 1/3 (33%) chances of success.
The chances of success after switching approach (N-1/N) where N represents the number of doors. For large values of N, the probability of success P(S) by switching is ~1 (near certainty). I came across this problem during a Math fair in my school, and have been fascinated by it ever since. I created this simulator to visualize the problem and prove that switching doors is beneficial.
Libraries and tools used
- Streamlit for the GUI
- Altair for the interactive line chart
- Pandas for recording the outcome of each iteration
- Huggingface Spaces for hosting
Check the demo at:
https://huggingface.co/spaces/0xarnav/MontyHall
You can change the number of doors and iterations to see how the probabilities change. For example, at 10 doors the probability of success after switching becomes ~90%. This simulation proves the surprising conclusion that switching doors generally leads to a higher chance of winning.
References
UC Analytics for the cover image
The above is the detailed content of Simulating the Monty Hall problem using Streamlit. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

Fastapi ...

Using python in Linux terminal...

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

About Pythonasyncio...

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...

Loading pickle file in Python 3.6 environment error: ModuleNotFoundError:Nomodulenamed...

Discussion on the reasons why pipeline files cannot be written when using Scapy crawlers When learning and using Scapy crawlers for persistent data storage, you may encounter pipeline files...
