Home Backend Development Python Tutorial FastAPI: How to use Pydantic to declare Query Parameters

FastAPI: How to use Pydantic to declare Query Parameters

Oct 10, 2024 am 06:11 AM

It came out about three weeks ago one of the most expected features of FastAPI. At least when we're talking about Pydantic Models FastAPI.

Yes, I'm talking about the ability to use Pydantic Models to map your query parameters.

So in this post, I'll try to show you all you ? can and ? can't do about this subject ?:

? Mapping Query Parameters

The first thing you need to do to start mapping your query parameters with Pydantic is making sure you are using FastAPI version 0.115.0.

After this, you can always go to FastAPI docs to check what is already available. Sebastián and the team members make a really, really good work on keeping do docs updated and informative ✨.

? A little bit of History

Let's start with some examples on how we used to map Query Parameters in FastAPI. ?

The simplest way to do it would be:

from fastapi import FastAPI

app = FastAPI()

@app.get("/")
async def search(
    limit: int | None = 10,
    skip: int | None = 1,
    filter: str | None = None
):
    return {
        "limit": limit,
        "skip": skip,
        "filter": filter
    }
Copy after login

And now you can simply call:

GET http://localhost:8000/?limit=42&skip=12&filter=banana
Copy after login

But if we identified that this Query Parameters would be used in other routes, we would isolate it with something like:

from typing import Any
from fastapi import Depends, FastAPI, Query

app = FastAPI()

async def pagination_query_string(
    limit: int | None = Query(10, ge=5, le=100),
    skip: int | None = Query(1, ge=1),
    filter: str | None = Query(None)
) -> dict[str, Any]:
    return {
        "limit": limit,
        "skip": skip,
        "filter": filter
    }

@app.get("/")
async def search(q: dict[str, Any] = Depends(pagination_query_string)):
    return q
Copy after login

Or since we're using Pydantic to map our models, with just a little refactoring we would get:

from fastapi import Depends, FastAPI, Query
from pydantic import BaseModel

app = FastAPI()

class PaginationQueryString(BaseModel):
    limit: int | None = 10
    skip: int | None = 1
    filter: str | None = None

async def pagination_query_string(
    limit: int | None = Query(10, ge=5, le=100),
    skip: int | None = Query(1, ge=1),
    filter: str | None = Query(None)
) -> PaginationQueryString:
    return PaginationQueryString(
        limit=limit,
        skip=skip,
        filter=filter
    )

@app.get("/")
async def search(q: PaginationQueryString = Depends(pagination_query_string)):
    return q
Copy after login

⌨️ Using Pydantic to map the Query Strings

FastAPI: How to use Pydantic to declare Query Parameters

Now, if we want to get our query string, we don't need to create a function and then add it as a dependency. We can simply tell FastAPI that we want an object of type PaginationQueryString and that it's a query string:

from typing import Annotated
from fastapi import FastAPI, Query
from pydantic import BaseModel

app = FastAPI()

class PaginationQueryString(BaseModel):
    limit: int | None = 10
    skip: int | None = 1
    filter: str | None = None

@app.get("/")
async def search(q: Annotated[PaginationQueryString, Query()]):
    return q
Copy after login

Easy, right? ?

⚠️ What are the limitations?

At least at version 0.115.0, it don't work very well with nested models.

Let's try something like:

from typing import Annotated
from fastapi import FastAPI, Query
from pydantic import BaseModel

app = FastAPI()

class Filter(BaseModel):
    name: str | None = None
    age: int | None = None
    nickname: str | None = None

class PaginationQueryString(BaseModel):
    limit: int | None = 10
    skip: int | None = 1
    filter: Filter | None = None

@app.get("/")
async def search(q: Annotated[PaginationQueryString, Query()]):
    return q
Copy after login

If we call it like before:

GET http://localhost:8000/?limit=42&skip=12&filter=chocolate
Copy after login

We'll get an error telling us that filter is an object:

{
    "detail": [
        {
            "type": "model_attributes_type",
            "loc": [
                "query",
                "filter"
            ],
            "msg": "Input should be a valid dictionary or object to extract fields from",
            "input": "chocolate"
        }
    ]
}
Copy after login

At least right now, it's absolutely right! We changed our filter to be a Pydantic model, not a string. But if we try to convert it to a dictionary:

http://localhost:8000/?limit=42&skip=12&filter={%22name%22:%20%22Rafael%22,%20%22age%22:%2038,%20%22nickname%22:%20%22ceb10n%22}
Copy after login

FastAPI will tell us that filter needs to be a valid dictionary ?:

{
    "detail": [
        {
            "type": "model_attributes_type",
            "loc": [
                "query",
                "filter"
            ],
            "msg": "Input should be a valid dictionary or object to extract fields from",
            "input": "{\"name\": \"Rafael\", \"age\": 38, \"nickname\": \"ceb10n\"}"
        }
    ]
}
Copy after login

It's happening this because FastAPI will rely on Starlette's QueryParams, that will give a string to FastAPI, not a dict. And at least in version 0.115.0, this will give you an error.

⁉️ So, when do I use Pydantic models with my Query Parameters?

It's quite simple:

✅ You have simple query strings that don't need any elaborate fancy nested objects? Use it! ?

❌ You created a complex nested query string? Don't use it yet ?. (And maybe you should try to rethink your query strings. ? The simpler, the better ?)

The above is the detailed content of FastAPI: How to use Pydantic to declare Query Parameters. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? How to avoid being detected by the browser when using Fiddler Everywhere for man-in-the-middle reading? Apr 02, 2025 am 07:15 AM

How to avoid being detected when using FiddlerEverywhere for man-in-the-middle readings When you use FiddlerEverywhere...

How to solve permission issues when using python --version command in Linux terminal? How to solve permission issues when using python --version command in Linux terminal? Apr 02, 2025 am 06:36 AM

Using python in Linux terminal...

How to teach computer novice programming basics in project and problem-driven methods within 10 hours? How to teach computer novice programming basics in project and problem-driven methods within 10 hours? Apr 02, 2025 am 07:18 AM

How to teach computer novice programming basics within 10 hours? If you only have 10 hours to teach computer novice some programming knowledge, what would you choose to teach...

How to get news data bypassing Investing.com's anti-crawler mechanism? How to get news data bypassing Investing.com's anti-crawler mechanism? Apr 02, 2025 am 07:03 AM

Understanding the anti-crawling strategy of Investing.com Many people often try to crawl news data from Investing.com (https://cn.investing.com/news/latest-news)...

Python 3.6 loading pickle file error ModuleNotFoundError: What should I do if I load pickle file '__builtin__'? Python 3.6 loading pickle file error ModuleNotFoundError: What should I do if I load pickle file '__builtin__'? Apr 02, 2025 am 06:27 AM

Loading pickle file in Python 3.6 environment error: ModuleNotFoundError:Nomodulenamed...

What is the reason why pipeline files cannot be written when using Scapy crawler? What is the reason why pipeline files cannot be written when using Scapy crawler? Apr 02, 2025 am 06:45 AM

Discussion on the reasons why pipeline files cannot be written when using Scapy crawlers When learning and using Scapy crawlers for persistent data storage, you may encounter pipeline files...

See all articles