Home Backend Development Python Tutorial Understanding the ETL Process with Real-Time Data: Extraction, Transformation, Loading, and Visualization

Understanding the ETL Process with Real-Time Data: Extraction, Transformation, Loading, and Visualization

Oct 04, 2024 pm 12:11 PM

Understanding the ETL Process with Real-Time Data: Extraction, Transformation, Loading, and Visualization

The ETL (Extract, Transform, Load) process is fundamental for managing data efficiently, especially in applications that require quick decision-making based on real-time data. In this article, we will explore the ETL process using a practical example involving real-time cryptocurrency trades from the Binance API. The Python code provided illustrates how to extract trade data, transform it into a usable format, load it into an SQLite database, and visualize the data with real-time plotting.

Sample ETL Project : https://github.com/vcse59/FeatureEngineering/tree/main/Real-Time-CryptoCurrency-Price-Tracker

1. Extract
The first step of the ETL process is Extraction, which involves gathering data from various sources. In this case, data is extracted through a WebSocket connection to the Binance Testnet API. This connection allows for real-time streaming of BTC/USDT trades.

Here's how the extraction is implemented in the code:

 with websockets.connect(url) as ws:
    response = await ws.recv()
    trade_data = json.loads(response)

Copy after login

Each message received contains essential trade data, including the price, quantity, and timestamp, which is formatted as JSON.

2. Transform
Once the data is extracted, it undergoes the Transformation process. This step cleans and structures the data to make it more useful. In our example, the transformation includes converting the timestamp from milliseconds to a readable format and organizing the data into appropriate types for further processing.


price = float(trade_data['p'])
quantity = float(trade_data['q'])
timestamp = int(trade_data['T'])

trade_time = datetime.fromtimestamp(timestamp / 1000.0)


Copy after login

This ensures that the price and quantity are stored as floats, and the timestamp is converted to a datetime object for easier manipulation and analysis.

3. Load
The final step is Loading, where the transformed data is stored in a target database. In our code, the SQLite database serves as the storage medium for the trade data.

The loading process is managed by the following function:


def save_trade_to_db(price, quantity, timestamp):
    conn = sqlite3.connect('trades.db')
    cursor = conn.cursor()
    # Create a table if it doesn't exist
    cursor.execute('''
        CREATE TABLE IF NOT EXISTS trades (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            price REAL,
            quantity REAL,
            timestamp TEXT
        )
    ''')
    # Insert the trade data
    cursor.execute('''
        INSERT INTO trades (price, quantity, timestamp)
        VALUES (?, ?, ?)
    ''', (price, quantity, trade_time))
    conn.commit()
    conn.close()


Copy after login

This function connects to the SQLite database, creates a table if it doesn't exist, and inserts the trade data.

4. Visualize
In addition to storing data, it is essential to visualize it for better understanding and decision-making. The provided code includes a function to plot the trades in real-time:


def plot_trades():
    if len(trades) > 0:
        timestamps, prices, quantities = zip(*trades)

        plt.subplot(2, 1, 1)
        plt.cla()  # Clear the previous plot for real-time updates
        plt.plot(timestamps, prices, label='Price', color='blue')
        plt.ylabel('Price (USDT)')
        plt.legend()
        plt.title('Real-Time BTC/USDT Prices')
        plt.xticks(rotation=45)

        plt.subplot(2, 1, 2)
        plt.cla()  # Clear the previous plot for real-time updates
        plt.plot(timestamps, quantities, label='Quantity', color='orange')
        plt.ylabel('Quantity')
        plt.xlabel('Time')
        plt.legend()
        plt.xticks(rotation=45)

        plt.tight_layout()  # Adjust layout for better spacing
        plt.pause(0.1)  # Pause to update the plot


Copy after login

This function generates two subplots: one for price and another for quantity. It uses the matplotlib library to visualize the data dynamically, allowing users to observe market trends in real-time.

Conclusion
This example highlights the ETL process, demonstrating how data can be extracted from a WebSocket API, transformed for analysis, loaded into a database, and visualized for immediate feedback. This framework is crucial for building applications that need to make informed decisions based on real-time data, such as trading platforms and market analysis tools.

The above is the detailed content of Understanding the ETL Process with Real-Time Data: Extraction, Transformation, Loading, and Visualization. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1662
14
PHP Tutorial
1261
29
C# Tutorial
1234
24
Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

See all articles