Home Backend Development Python Tutorial Access IRIS database with ODBC or JDBC using Python

Access IRIS database with ODBC or JDBC using Python

Sep 29, 2024 am 06:14 AM

Access IRIS database with ODBC or JDBC using Python

Problems with Strings

I am accessing IRIS databases with JDBC (or ODBC) using Python. I want to fetch the data into a pandas dataframe to manipulate the data and create charts from it. I ran into a problem with string handling while using JDBC. This post is to help if anyone else has the same issues. Or, if there is an easier way to solve this, let me know in the comments!

I am using OSX, so I am unsure how unique my problem is. I am using Jupyter Notebooks, although the code would generally be the same if you used any other Python program or framework.

The JDBC problem

When I fetch data from the database the column descriptions and any string data are returned as data type java.lang.String. If you print string data data it will look like: "(p,a,i,n,i,n,t,h,e,r,e,a,r)" instead of the expected "painintherear".

This is probably because character strings of data type java.lang.String are coming through as an iterable or array when fetched using JDBC. This can happen if the Python-Java bridge you're using (e.g., JayDeBeApi, JDBC) is not automatically converting java.lang.String to a Python str in a single step.

Python's str string representation, in contrast, has the whole string as a single unit. When Python retrieves a normal str (e.g. via ODBC), it doesn't split into individual characters.

The JDBC Solution

To fix this issue, you must ensure that the java.lang.String is correctly converted into Python's str type. You can explicitly handle this conversion when processing the fetched data so it is not interpreted as an iterable or list of characters.

There are many ways to do this string manipulation; this is what I did.

import pandas as pd

import pyodbc

import jaydebeapi
import jpype

def my_function(jdbc_used)

    # Some other code to create the connection goes here

    cursor.execute(query_string)

    if jdbc_used:
        # Fetch the results, convert java.lang.String in the data to Python str
        # (java.lang.String is returned "(p,a,i,n,i,n,t,h,e,r,e,a,r)" Convert to str type "painintherear"
        results = []
        for row in cursor.fetchall():
            converted_row = [str(item) if isinstance(item, jpype.java.lang.String) else item for item in row]
            results.append(converted_row)

        # Get the column names and ensure they are Python strings 
        column_names = [str(col[0]) for col in cursor.description]

        # Create the dataframe
        df = pd.DataFrame.from_records(results, columns=column_names)

        # Check the results
        print(df.head().to_string())

    else:  
        # I was also testing ODBC
        # For very large result sets get results in chunks using cursor.fetchmany(). or fetchall()
        results = cursor.fetchall()
        # Get the column names
        column_names = [column[0] for column in cursor.description]
        # Create the dataframe
        df = pd.DataFrame.from_records(results, columns=column_names)

    # Do stuff with your dataframe
Copy after login

The ODBC problem

When using an ODBC connection, strings are not returned or are NA.

If you're connecting to a database that contains Unicode data (e.g., names in different languages) or if your application needs to store or retrieve non-ASCII characters, you must ensure that the data remains correctly encoded when passed between the database and your Python application.

The ODBC solution

This code ensures that string data is encoded and decoded using UTF-8 when sending and retrieving data to the database. It's especially important when dealing with non-ASCII characters or ensuring compatibility with Unicode data.

def create_connection(connection_string, password):
    connection = None

    try:
        # print(f"Connecting to {connection_string}")
        connection = pyodbc.connect(connection_string + ";PWD=" + password)

        # Ensure strings are read correctly
        connection.setdecoding(pyodbc.SQL_CHAR, encoding="utf8")
        connection.setdecoding(pyodbc.SQL_WCHAR, encoding="utf8")
        connection.setencoding(encoding="utf8")

    except pyodbc.Error as e:
        print(f"The error '{e}' occurred")

    return connection
Copy after login

connection.setdecoding(pyodbc.SQL_CHAR, encoding="utf8")

Tells pyodbc how to decode character data from the database when fetching SQL_CHAR types (typically, fixed-length character fields).

connection.setdecoding(pyodbc.SQL_WCHAR, encoding="utf8")

Sets the decoding for SQL_WCHAR, wide-character types (i.e., Unicode strings, such as NVARCHAR or NCHAR in SQL Server).

connection.setencoding(encoding="utf8")

Ensures that any strings or character data sent from Python to the database will be encoded using UTF-8,
meaning Python will translate its internal str type (which is Unicode) into UTF-8 bytes when communicating with the database.


Putting it all together

Install JDBC

Install JAVA - use dmg

https://www.oracle.com/middleeast/java/technologies/downloads/#jdk23-mac

Update shell to set default version

$ /usr/libexec/java_home -V
Matching Java Virtual Machines (2):
    23 (arm64) "Oracle Corporation" - "Java SE 23" /Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home
    1.8.421.09 (arm64) "Oracle Corporation" - "Java" /Library/Internet Plug-Ins/JavaAppletPlugin.plugin/Contents/Home
/Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home
$ echo $SHELL
/opt/homebrew/bin/bash
$ vi ~/.bash_profile
Copy after login

Add JAVA_HOME to your path

export JAVA_HOME=$(/usr/libexec/java_home -v 23)
export PATH=$JAVA_HOME/bin:$PATH
Copy after login

Get the JDBC driver

https://intersystems-community.github.io/iris-driver-distribution/

Put the jar file somewhere... I put it in $HOME

$ ls $HOME/*.jar
/Users/myname/intersystems-jdbc-3.8.4.jar
Copy after login

Sample code

It assumes you have set up ODBC (an example for another day, the dog ate my notes...).

Note: this is a hack of my real code. Note the variable names.

import os

import datetime
from datetime import date, time, datetime, timedelta

import pandas as pd
import pyodbc

import jaydebeapi
import jpype

def jdbc_create_connection(jdbc_url, jdbc_username, jdbc_password):

    # Path to JDBC driver
    jdbc_driver_path = '/Users/yourname/intersystems-jdbc-3.8.4.jar'

    # Ensure JAVA_HOME is set
    os.environ['JAVA_HOME']='/Library/Java/JavaVirtualMachines/jdk-23.jdk/Contents/Home'
    os.environ['CLASSPATH'] = jdbc_driver_path

    # Start the JVM (if not already running)
    if not jpype.isJVMStarted():
        jpype.startJVM(jpype.getDefaultJVMPath(), classpath=[jdbc_driver_path])

    # Connect to the database
    connection = None

    try:
        connection = jaydebeapi.connect("com.intersystems.jdbc.IRISDriver",
                                  jdbc_url,
                                  [jdbc_username, jdbc_password],
                                  jdbc_driver_path)
        print("Connection successful")
    except Exception as e:
        print(f"An error occurred: {e}")

    return connection


def odbc_create_connection(connection_string):
    connection = None

    try:
        # print(f"Connecting to {connection_string}")
        connection = pyodbc.connect(connection_string)

        # Ensure strings are read correctly
        connection.setdecoding(pyodbc.SQL_CHAR, encoding="utf8")
        connection.setdecoding(pyodbc.SQL_WCHAR, encoding="utf8")
        connection.setencoding(encoding="utf8")

    except pyodbc.Error as e:
        print(f"The error '{e}' occurred")

    return connection

# Parameters

odbc_driver = "InterSystems ODBC"
odbc_host = "your_host"
odbc_port = "51773"
odbc_namespace = "your_namespace"
odbc_username = "username"
odbc_password = "password"

jdbc_host = "your_host"
jdbc_port = "51773"
jdbc_namespace = "your_namespace"
jdbc_username = "username"
jdbc_password = "password"

# Create connection and create charts

jdbc_used = True

if jdbc_used:
    print("Using JDBC")
    jdbc_url = f"jdbc:IRIS://{jdbc_host}:{jdbc_port}/{jdbc_namespace}?useUnicode=true&characterEncoding=UTF-8"
    connection = jdbc_create_connection(jdbc_url, jdbc_username, jdbc_password)
else:
    print("Using ODBC")
    connection_string = f"Driver={odbc_driver};Host={odbc_host};Port={odbc_port};Database={odbc_namespace};UID={odbc_username};PWD={odbc_password}"
    connection = odbc_create_connection(connection_string)


if connection is None:
    print("Unable to connect to IRIS")
    exit()

cursor = connection.cursor()

site = "SAMPLE"
table_name = "your.TableNAME"

desired_columns = [
    "RunDate",
    "ActiveUsersCount",
    "EpisodeCountEmergency",
    "EpisodeCountInpatient",
    "EpisodeCountOutpatient",
    "EpisodeCountTotal",
    "AppointmentCount",
    "PrintCountTotal",
    "site",
]

# Construct the column selection part of the query
column_selection = ", ".join(desired_columns)

query_string = f"SELECT {column_selection} FROM {table_name} WHERE Site = '{site}'"

print(query_string)
cursor.execute(query_string)

if jdbc_used:
    # Fetch the results
    results = []
    for row in cursor.fetchall():
        converted_row = [str(item) if isinstance(item, jpype.java.lang.String) else item for item in row]
        results.append(converted_row)

    # Get the column names and ensure they are Python strings (java.lang.String is returned "(p,a,i,n,i,n,t,h,e,a,r,s,e)"
    column_names = [str(col[0]) for col in cursor.description]

    # Create the dataframe
    df = pd.DataFrame.from_records(results, columns=column_names)
    print(df.head().to_string())
else:
    # For very large result sets get results in chunks using cursor.fetchmany(). or fetchall()
    results = cursor.fetchall()
    # Get the column names
    column_names = [column[0] for column in cursor.description]
    # Create the dataframe
    df = pd.DataFrame.from_records(results, columns=column_names)

    print(df.head().to_string())

# # Build charts for a site
# cf.build_7_day_rolling_average_chart(site, cursor, jdbc_used)

cursor.close()
connection.close()

# Shutdown the JVM (if you started it)
# jpype.shutdownJVM()
Copy after login

The above is the detailed content of Access IRIS database with ODBC or JDBC using Python. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1671
14
PHP Tutorial
1276
29
C# Tutorial
1256
24
Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python vs. C  : Exploring Performance and Efficiency Python vs. C : Exploring Performance and Efficiency Apr 18, 2025 am 12:20 AM

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Learning Python: Is 2 Hours of Daily Study Sufficient? Learning Python: Is 2 Hours of Daily Study Sufficient? Apr 18, 2025 am 12:22 AM

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python vs. C  : Understanding the Key Differences Python vs. C : Understanding the Key Differences Apr 21, 2025 am 12:18 AM

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.

Which is part of the Python standard library: lists or arrays? Which is part of the Python standard library: lists or arrays? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python: Automation, Scripting, and Task Management Python: Automation, Scripting, and Task Management Apr 16, 2025 am 12:14 AM

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Python for Web Development: Key Applications Python for Web Development: Key Applications Apr 18, 2025 am 12:20 AM

Key applications of Python in web development include the use of Django and Flask frameworks, API development, data analysis and visualization, machine learning and AI, and performance optimization. 1. Django and Flask framework: Django is suitable for rapid development of complex applications, and Flask is suitable for small or highly customized projects. 2. API development: Use Flask or DjangoRESTFramework to build RESTfulAPI. 3. Data analysis and visualization: Use Python to process data and display it through the web interface. 4. Machine Learning and AI: Python is used to build intelligent web applications. 5. Performance optimization: optimized through asynchronous programming, caching and code

See all articles