


Writing Clean, Efficient, and Maintainable Code - Python as use case.
Writing Clean, Efficient, and Maintainable Code - Python as use case.
If you have been a developer for some time, you may understand the importance of proper coding as against the rush of just writing somthings that works. One of the greatest setback this has for you is when you need to review your code you rarely can make sense of what you were trying to do and for others, they have a hard time reading your code.
I recently have been reviewing some codes and I think it is important to stress the need to clean, efficien code.
Some history to guidelines and styles in coding
In the early 1970's when the C Programming language was gaining popularity coding style become a matter of discussion and two notable names around this were Brian Kernighan and Dennis Ritchie.
Interestingly, Ada language enforced strict coding guidelines and standards in the rearly 1980's. Mid 1990's Python and Java came in with strong coding conventions from the initial phase and Python Enhancement Proposal (PEP 8) was well adopted which today is still a valid coding convention.
- PEP 8 Guidelines for Code Styling: I have used this guideline everynow and then and I have seen other programmers adopt this.
VS Code's flake8 code linting extension is a great choice I use.
The guidelines are:
Indentation: Use 4 spaces per indentation level.
Line Length: Limit all lines to a maximum of 79 characters.
Naming Conventions: Use snake_case for function and variable names and CamelCase for class names.
For example:
`# defining variables using snake_case total_price = 100 customer_email = "customer@example.com" # defining functions using snake_case def calculate_total_price(): pass class OrderManager: pass`
2. Meaningful comments and documentations: Docstrings helps developers understand a function/methods purpose, paramters and return values. It is generally good practice to introduce them and writing comments to clarify a complex logic or decision
For example:
def calculate_total_price(price: float, quantity: int) -> float: """ Calculate the total price of items. Args: price (float): The price of a single item. quantity (int): The number of items purchased. Returns: float: The total price. """ return price * quantity
**3. Code Repititions: **As a simply rule of thumb avoid repeating a code that's already implemented, instead follow the DRY principle by making reusable functions. The caveat to this is, when a new developer implements a change, the developer might not know there is a duplicated code that has been left out and can mess with a whole lot owing to this error.
For example, you have a function that calculates total price for an ecommerce store by multiplying the price and quantity.
total_price_laptops = 1000 * 2 total_price_phones = 500 * 3 This, is easily done with reusable functions like this: def calculate_total(price, quantity): return price * quantity total_price_laptops = calculate_total(1000, 2) total_price_phones = calculate_total(500, 3)
4. Type Hints: Python is dynamically typed language, type hinting your code improve readability and catch errors early. It is easier to understand what data types are expected.
For example:
def get_discounted_price(price: float, discount: float) -> float: return price - (price * discount)
**5. Writing Tests: **Tests validate the functionality of your code. Popular frameworks like unittest or pytest make writing and running tests simple. Testing asserts that your code behaves as expected, reducing the risk of introducing bugs when making changes or refactoring.
def test_calculate_total_price(): assert calculate_total_price(100, 2) == 200
6. Exceptions: It can be embarassing when production codes print out lines of meaninglesss code to client users or even worse, output environmental variables. Avoiding this is easier with exception try/except/finally handling to manage predictable errors and ensure your application doesn't crash unexpectedly.
try: value = int(input("Enter a number: ")) except ValueError: print("That's not a valid number!") finally: print('Thank you!')
7. Code Modularization: There is no rule that says to keep your codes in one file. Break down large blocks of code into smaller, reusable modules and import them across the application where neede. It is easier to test and update.
8. Version Control: Version control systems like Git is a fundamental best practice in modern development. Others are Beanstalk, PerForce, Apache subversion. Version controls can track changes, reduce human errors during collaborations and unintended consequences to a great extent.
By following best practices like adhering to PEP 8, keeping your code DRY, writing meaningful documentation, and handling exceptions gracefully, you can ensure that your Python projects are professional, scalable, and easy to maintain.
Start implementing these tips today, and you'll see a noticeable improvement in the quality of your code.
The above is the detailed content of Writing Clean, Efficient, and Maintainable Code - Python as use case.. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.
