Home Backend Development Python Tutorial Mastering CRUD Operations with OpenSearch in Python: A Practical Guide

Mastering CRUD Operations with OpenSearch in Python: A Practical Guide

Sep 21, 2024 pm 10:15 PM

Mastering CRUD Operations with OpenSearch in Python: A Practical Guide

OpenSearch, an open-source alternative to Elasticsearch, is a powerful search and analytics engine built to handle large datasets with ease. In this blog, we’ll demonstrate how to perform basic CRUD (Create, Read, Update, Delete) operations in OpenSearch using Python.

Prerequisites:

  • Python 3.7+
  • OpenSearch installed locally using Docker
  • Familiarity with RESTful APIs

Step 1: Setting Up OpenSearch Locally with Docker

To get started, we need a local OpenSearch instance. Below is a simple docker-compose.yml file that spins up OpenSearch and OpenSearch Dashboards.

version: '3'
services:
  opensearch-test-node-1:
    image: opensearchproject/opensearch:2.13.0
    container_name: opensearch-test-node-1
    environment:
      - cluster.name=opensearch-test-cluster
      - node.name=opensearch-test-node-1
      - discovery.seed_hosts=opensearch-test-node-1,opensearch-test-node-2
      - cluster.initial_cluster_manager_nodes=opensearch-test-node-1,opensearch-test-node-2
      - bootstrap.memory_lock=true
      - "OPENSEARCH_JAVA_OPTS=-Xms512m -Xmx512m"
      - "DISABLE_INSTALL_DEMO_CONFIG=true"
      - "DISABLE_SECURITY_PLUGIN=true"
    ulimits:
      memlock:
        soft: -1
        hard: -1
      nofile:
        soft: 65536
        hard: 65536
    volumes:
      - opensearch-test-data1:/usr/share/opensearch/data
    ports:
      - 9200:9200
      - 9600:9600
    networks:
      - opensearch-test-net

  opensearch-test-node-2:
    image: opensearchproject/opensearch:2.13.0
    container_name: opensearch-test-node-2
    environment:
      - cluster.name=opensearch-test-cluster
      - node.name=opensearch-test-node-2
      - discovery.seed_hosts=opensearch-test-node-1,opensearch-test-node-2
      - cluster.initial_cluster_manager_nodes=opensearch-test-node-1,opensearch-test-node-2
      - bootstrap.memory_lock=true
      - "OPENSEARCH_JAVA_OPTS=-Xms512m -Xmx512m"
      - "DISABLE_INSTALL_DEMO_CONFIG=true"
      - "DISABLE_SECURITY_PLUGIN=true"
    ulimits:
      memlock:
        soft: -1
        hard: -1
      nofile:
        soft: 65536
        hard: 65536
    volumes:
      - opensearch-test-data2:/usr/share/opensearch/data
    networks:
      - opensearch-test-net

  opensearch-test-dashboards:
    image: opensearchproject/opensearch-dashboards:2.13.0
    container_name: opensearch-test-dashboards
    ports:
      - 5601:5601
    expose:
      - "5601"
    environment:
      - 'OPENSEARCH_HOSTS=["http://opensearch-test-node-1:9200","http://opensearch-test-node-2:9200"]'
      - "DISABLE_SECURITY_DASHBOARDS_PLUGIN=true"
    networks:
      - opensearch-test-net

volumes:
  opensearch-test-data1:
  opensearch-test-data2:

networks:
  opensearch-test-net:

Copy after login

Run the following command to bring up your OpenSearch instance:
docker-compose up
OpenSearch will be accessible at http://localhost:9200.

Step 2: Setting Up the Python Environment

python -m venv .venv
source .venv/bin/activate
pip install opensearch-py
Copy after login

We'll also structure our project as follows:

├── interfaces.py
├── main.py
├── searchservice.py
├── docker-compose.yml
Copy after login

Step 3: Defining Interfaces and Resources (interfaces.py)

In the interfaces.py file, we define our Resource and Resources classes. These will help us dynamically handle different resource types in OpenSearch (in this case, users).

from dataclasses import dataclass, field

@dataclass
class Resource:
    name: str

    def __post_init__(self) -> None:
        self.name = self.name.lower()

@dataclass
class Resources:
    users: Resource = field(default_factory=lambda: Resource("Users"))

Copy after login

Step 4: CRUD Operations with OpenSearch (searchservice.py)

In searchservice.py, we define an abstract class SearchService to outline the required operations. The HTTPOpenSearchService class then implements these CRUD methods, interacting with the OpenSearch client.

# coding: utf-8

import abc
import logging
import typing as t
from dataclasses import dataclass
from uuid import UUID

from interfaces import Resource, Resources
from opensearchpy import NotFoundError, OpenSearch

resources = Resources()


class SearchService(abc.ABC):
    def search(
        self,
        kinds: t.List[Resource],
        tenants_id: UUID,
        companies_id: UUID,
        query: t.Dict[str, t.Any],
    ) -> t.Dict[t.Literal["hits"], t.Dict[str, t.Any]]:
        raise NotImplementedError

    def delete_index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        data: t.Dict[str, t.Any],
    ) -> None:
        raise NotImplementedError

    def index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        data: t.Dict[str, t.Any],
    ) -> t.Dict[str, t.Any]:
        raise NotImplementedError

    def delete_document(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        document_id: str,
    ) -> t.Optional[t.Dict[str, t.Any]]:
        raise NotImplementedError

    def create_index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        data: t.Dict[str, t.Any],
    ) -> None:
        raise NotImplementedError


@dataclass(frozen=True)
class HTTPOpenSearchService(SearchService):
    client: OpenSearch

    def _gen_index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
    ) -> str:
        return (
            f"tenant_{str(UUID(str(tenants_id)))}"
            f"_company_{str(UUID(str(companies_id)))}"
            f"_kind_{kind.name}"
        )

    def index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        data: t.Dict[str, t.Any],
    ) -> t.Dict[str, t.Any]:
        self.client.index(
            index=self._gen_index(kind, tenants_id, companies_id),
            body=data,
            id=data.get("id"),
        )
        return data

    def delete_index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
    ) -> None:
        try:
            index = self._gen_index(kind, tenants_id, companies_id)
            if self.client.indices.exists(index):
                self.client.indices.delete(index)
        except NotFoundError:
            pass

    def create_index(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
    ) -> None:
        body: t.Dict[str, t.Any] = {}
        self.client.indices.create(
            index=self._gen_index(kind, tenants_id, companies_id),
            body=body,
        )

    def search(
        self,
        kinds: t.List[Resource],
        tenants_id: UUID,
        companies_id: UUID,
        query: t.Dict[str, t.Any],
    ) -> t.Dict[t.Literal["hits"], t.Dict[str, t.Any]]:
        return self.client.search(
            index=",".join(
                [self._gen_index(kind, tenants_id, companies_id) for kind in kinds]
            ),
            body={"query": query},
        )

    def delete_document(
        self,
        kind: Resource,
        tenants_id: UUID,
        companies_id: UUID,
        document_id: str,
    ) -> t.Optional[t.Dict[str, t.Any]]:
        try:
            response = self.client.delete(
                index=self._gen_index(kind, tenants_id, companies_id),
                id=document_id,
            )
            return response
        except Exception as e:
            logging.error(f"Error deleting document: {e}")
            return None

Copy after login

Step 5: Implementing CRUD in Main (main.py)

In main.py, we demonstrate how to:

  • Create an index in OpenSearch.
  • Index documents with sample user data.
  • Search for documents based on a query.
  • Delete a document using its ID.

main.py

# coding=utf-8

import logging
import os
import typing as t
from uuid import uuid4

import searchservice
from interfaces import Resources
from opensearchpy import OpenSearch

resources = Resources()

logging.basicConfig(level=logging.INFO)

search_service = searchservice.HTTPOpenSearchService(
    client=OpenSearch(
        hosts=[
            {
                "host": os.getenv("OPENSEARCH_HOST", "localhost"),
                "port": os.getenv("OPENSEARCH_PORT", "9200"),
            }
        ],
        http_auth=(
            os.getenv("OPENSEARCH_USERNAME", ""),
            os.getenv("OPENSEARCH_PASSWORD", ""),
        ),
        use_ssl=False,
        verify_certs=False,
    ),
)

tenants_id: str = "f0835e2d-bd68-406c-99a7-ad63a51e9ef9"
companies_id: str = "bf58c749-c90a-41e2-b66f-6d98aae17a6c"
search_str: str = "frank"
document_id_to_delete: str = str(uuid4())

fake_data: t.List[t.Dict[str, t.Any]] = [
    {"id": document_id_to_delete, "name": "Franklin", "tech": "python,node,golang"},
    {"id": str(uuid4()), "name": "Jarvis", "tech": "AI"},
    {"id": str(uuid4()), "name": "Parry", "tech": "Golang"},
    {"id": str(uuid4()), "name": "Steve", "tech": "iOS"},
    {"id": str(uuid4()), "name": "Frank", "tech": "node"},
]

search_service.delete_index(
    kind=resources.users, tenants_id=tenants_id, companies_id=companies_id
)

search_service.create_index(
    kind=resources.users,
    tenants_id=tenants_id,
    companies_id=companies_id,
)

for item in fake_data:
    search_service.index(
        kind=resources.users,
        tenants_id=tenants_id,
        companies_id=companies_id,
        data=dict(tenants_id=tenants_id, companies_id=companies_id, **item),
    )

search_query: t.Dict[str, t.Any] = {
    "bool": {
        "must": [],
        "must_not": [],
        "should": [],
        "filter": [
            {"term": {"tenants_id.keyword": tenants_id}},
            {"term": {"companies_id.keyword": companies_id}},
        ],
    }
}
search_query["bool"]["must"].append(
    {
        "multi_match": {
            "query": search_str,
            "type": "phrase_prefix",
            "fields": ["name", "tech"],
        }
    }
)

search_results = search_service.search(
    kinds=[resources.users],
    tenants_id=tenants_id,
    companies_id=companies_id,
    query=search_query,
)

final_result = search_results.get("hits", {}).get("hits", [])
for item in final_result:
    logging.info(["Item -> ", item.get("_source", {})])

deleted_result = search_service.delete_document(
    kind=resources.users,
    tenants_id=tenants_id,
    companies_id=companies_id,
    document_id=document_id_to_delete,
)
logging.info(["Deleted result -> ", deleted_result])

Copy after login

Step 6: Running the project

docker compose up
python main.py

Results:

It should print found & deleted records information.

Step 7: Conclusion

In this blog, we’ve demonstrated how to set up OpenSearch locally using Docker and perform basic CRUD operations with Python. OpenSearch provides a powerful and scalable solution for managing and querying large datasets. While this guide focuses on integrating OpenSearch with dummy data, in real-world applications, OpenSearch is often used as a read-optimized store for faster data retrieval. In such cases, it is common to implement different indexing strategies to ensure data consistency by updating both the primary database and OpenSearch concurrently.

This ensures that OpenSearch remains in sync with your primary data source, optimizing both performance and accuracy in data retrieval.

References:

https://github.com/FranklinThaker/opensearch-integration-example

The above is the detailed content of Mastering CRUD Operations with OpenSearch in Python: A Practical Guide. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Python vs. C  : Applications and Use Cases Compared Python vs. C : Applications and Use Cases Compared Apr 12, 2025 am 12:01 AM

Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

How Much Python Can You Learn in 2 Hours? How Much Python Can You Learn in 2 Hours? Apr 09, 2025 pm 04:33 PM

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python: Games, GUIs, and More Python: Games, GUIs, and More Apr 13, 2025 am 12:14 AM

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

The 2-Hour Python Plan: A Realistic Approach The 2-Hour Python Plan: A Realistic Approach Apr 11, 2025 am 12:04 AM

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python vs. C  : Learning Curves and Ease of Use Python vs. C : Learning Curves and Ease of Use Apr 19, 2025 am 12:20 AM

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Python: Exploring Its Primary Applications Python: Exploring Its Primary Applications Apr 10, 2025 am 09:41 AM

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python and Time: Making the Most of Your Study Time Python and Time: Making the Most of Your Study Time Apr 14, 2025 am 12:02 AM

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python: The Power of Versatile Programming Python: The Power of Versatile Programming Apr 17, 2025 am 12:09 AM

Python is highly favored for its simplicity and power, suitable for all needs from beginners to advanced developers. Its versatility is reflected in: 1) Easy to learn and use, simple syntax; 2) Rich libraries and frameworks, such as NumPy, Pandas, etc.; 3) Cross-platform support, which can be run on a variety of operating systems; 4) Suitable for scripting and automation tasks to improve work efficiency.

See all articles