Sorting Algorithms in Python
What is Sorting?
Sorting refers to the process of arranging data in a specific order, typically in ascending or descending order, based on a linear relationship among the data items.
Why Do We Need Sorting?
Sorting is crucial when working with structured data because it allows for efficient data retrieval, simplifies data analysis, and enhances overall data management.
Sorting Algorithms
This post covers the following sorting algorithms: Bubble Sort, Selection Sort, Insertion Sort, Merge Sort, and Quick Sort.
Bubble Sort
Bubble Sort repeatedly steps through the array, comparing adjacent elements and swapping them if they are in the wrong order. This process continues until the array is sorted, with larger elements "bubbling" to the end.
Algorithm
Step 1: Begin
Step 2: i = 0
Step 3: if i < length(array) - 1, goto Step 4; else goto Step 10
Step 4: j = 0
Step 5: if j < length(array) - i - 1, goto Step 6; else goto Step 3
Step 6: if array[j] > array[j + 1], goto Step 7; else goto Step 8
Step 7: Swap array[j] and array[j + 1]
Step 8: increment j; goto Step 5
Step 9: increment i; goto Step 3
Step 10: End
Code
def bubble_sort(arr): print("Array Before Sorting: ", end='') print(arr) for i in range(len(arr)): for j in range(len(arr)-i-1): if arr[j] > arr[j+1]: arr[j], arr[j+1] = arr[j+1], arr[j] print("Array After Sorting: ", end='') print(arr) # Main bubble_sort([7, 4, 1, 3, 4, 7, 87, 9, 6, 4, 2, 2, 3, 5, 6])
Time Complexity
Best Case : O(n)
Average Case : O(n^2)
Worst Case : O(n^2)
Selection Sort
Selection Sort finds the smallest value in the unsorted portion of the array and places it at the beginning of that portion.
Algorithm
Step 1 : Begin
Step 2 : i = 0
Step 3 : if i < length(array) - 1, goto Step 4; else goto Step 10
Step 4 : minimum_value = i; j = i + 1
Step 5 : if j < length(array), goto Step 6; else goto Step 9
Step 6 : if array[minimum_value] > array[j], goto Step 7; else goto Step 8
Step 7 : minimum_value = j
Step 8 : increment j; goto Step 5
Step 9 : swap array[minimum_value] and array[i]
Step 10 : increment i; goto Step 3
Step 11 : End
Code
def selection_sort(arr): print("Array Before Sorting: ", end='') print(arr) for i in range(len(arr) - 1): min_val = i for j in range(i + 1, len(arr)): if arr[j] < arr[min_val]: min_val = j arr[i], arr[min_val] = arr[min_val], arr[i] print("Array After Sorting: ", end='') print(arr) # Main selection_sort([7, 4, 1, 3, 4, 7, 87, 9, 6, 4, 2, 2, 3, 5, 6])
Time Complexity
Best Case : O(n^2)
Average Case : O(n^2)
Worst Case : O(n^2)
Insertion Sort
Insertion Sort builds the sorted array one element at a time by taking each element from the unsorted portion and inserting it into the correct position in the sorted portion.
Algorithm
Step 1: Begin
Step 2: i = 1
Step 3: if i < len(arr), goto Step 4; else goto Step 12
Step 4: key = arr[i]
Step 5: j = i - 1
Step 6: if j >= 0 and arr[j] > key, goto Step 7; else goto Step 10
Step 7: arr[j + 1] = arr[j]
Step 8: decrement j by 1
Step 9: goto Step 6
Step 10: arr[j + 1] = key
Step 11: increment i by 1; goto Step 3
Step 12: End
Code
def insertion_sort(arr): for i in range(1, len(arr)): key = arr[i] j = i - 1 while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key # Main arr = [7, 4, 1, 3, 4, 7, 87, 9, 6, 4, 2, 2, 3, 5, 6] print("Array Before Sorting:", arr) insertion_sort(arr) print("Array After Sorting:", arr)
Time Complexity
Best Case : O(n)
Average Case : O(n^2)
Worst Case : O(n^2)
Merge Sort
Merge Sort is a divide-and-conquer algorithm that recursively divides the array into smaller sub-arrays, sorts them, and then merges them back together.
Algorithm
Merge Sort Algorithm
Step 1: Begin
Step 2: If length(array) <= 1, Return array; goto Step 9
Step 3: mid_point = length(array) // 2
Step 4: left_half = array[:mid_point]
Step 5: right_half = array[mid_point:]
Step 6: sorted_left = merge_sort(left_half)
Step 7: sorted_right = merge_sort(right_half)
Step 8: return merge(sorted_left, sorted_right)
Step 9: End
Merge Function
Step 1: Begin
Step 2: sorted_merge = []
Step 3: l = 0, r = 0
Step 4: if l < len(left) and r < len(right), goto Step 5; else goto Step 9
Step 5: if left[l] <= right[r], goto Step 6; else goto Step 7
Step 6: add left[l] to sorted_merge; increment l by 1
Step 7: add right[r] to sorted_merge; increment r by 1
Step 8: goto Step 4
Step 9: if l < len(left), goto Step 10; else goto Step 12
Step 10: add left[l] to sorted_merge; increment l by 1
Step 11: goto Step 9
Step 12: if r < len(right), goto Step 13; else goto Step 15
Step 13: add right[r] to sorted_merge; increment r by 1
Step 14: goto Step 12
Step 15: Return sorted_merge
Step 16: End
Code
def merge(left, right): sorted_merge = [] l = r = 0 while l < len(left) and r < len(right): if left[l] <= right[r]: sorted_merge.append(left[l]) l += 1 else: sorted_merge.append(right[r]) r += 1 while l < len(left): sorted_merge.append(left[l]) l += 1 while r < len(right): sorted_merge.append(right[r]) r += 1 return sorted_merge def merge_sort(arr): if len(arr) <= 1: return arr mid_point = len(arr) // 2 left_half = arr[:mid_point] right_half = arr[mid_point:] sorted_left = merge_sort(left_half) sorted_right = merge_sort(right_half) return merge(sorted_left, sorted_right) # Main arr = [7, 4, 1, 3, 4, 7, 87, 9, 6, 4, 2, 2, 3, 5, 6] print("Array Before Sorting:", arr) arr = merge_sort(arr) print("Array After Sorting:", arr)
Time Complexity
Best Case : O(n log n)
Average Case : O(n log n)
Worst Case : O(n log n)
Quick Sort
Quick Sort is an efficient, in-place sorting algorithm that uses a divide-and-conquer approach. It selects a pivot element and partitions the array around the pivot so that elements less than the pivot are on its left and elements greater than the pivot are on its right. This process is then recursively applied to the sub-arrays.
Algorithm
Quick Sort
Step 1: Begin
Step 2: If low < high, goto Step 3; else goto Step 6
Step 3: pivot_index = partition(arr, low, high)
Step 4: quicksort(arr, low, pivot_index - 1)
Step 5: quicksort(arr, pivot_index + 1, high)
Step 6: End
Partition Function
Step 1: Begin
Step 2: pivot = arr[high]
Step 3: left = low, right = high - 1
Step 4: if left <= right goto Step 5, else goto Step 9
Step 5: if arr[left] > pivot and arr[right] < pivot, swap arr[left] and arr[right]
Step 6: if arr[left] <= pivot, increment left
Step 7: if arr[right] >= pivot, decrement right
Step 8: goto Step 4
Step 9: swap arr[left] and arr[high]
Step 10: return left
Step 11: End
Code
def partition(arr, low, high): pivot = arr[high] left = low right = high - 1 while left <= right: if arr[left] > pivot and arr[right] < pivot: arr[left], arr[right] = arr[right], arr[left] if arr[left] <= pivot: left += 1 if arr[right] >= pivot: right -= 1 arr[left], arr[high] = arr[high], arr[left] return left def quicksort(arr, low, high): if low < high: pivot_index = partition(arr, low, high) quicksort(arr, low, pivot_index - 1) quicksort(arr, pivot_index + 1, high) # Main arr = [7, 4, 1, 3, 4, 7, 87, 9, 6, 4, 2, 2, 3, 5, 6] print("Array Before Sorting:", arr) quicksort(arr, 0, len(arr) - 1) print("Array After Sorting:", arr)
Time Complexity
Best Case : O(n log n)
Average Case : O(n log n)
Worst Case : O(n^2)
The above is the detailed content of Sorting Algorithms in Python. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

Is it enough to learn Python for two hours a day? It depends on your goals and learning methods. 1) Develop a clear learning plan, 2) Select appropriate learning resources and methods, 3) Practice and review and consolidate hands-on practice and review and consolidate, and you can gradually master the basic knowledge and advanced functions of Python during this period.

Python and C each have their own advantages, and the choice should be based on project requirements. 1) Python is suitable for rapid development and data processing due to its concise syntax and dynamic typing. 2)C is suitable for high performance and system programming due to its static typing and manual memory management.
