Home Technology peripherals AI Open and closed source model 'Chaos': Let's see which agent can best glimpse human beings' true intentions

Open and closed source model 'Chaos': Let's see which agent can best glimpse human beings' true intentions

Aug 11, 2024 pm 01:02 PM
industry

Open and closed source model Chaos: Lets see which agent can best glimpse human beings true intentions
The AIxiv column is a column where this site publishes academic and technical content. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

The first authors of this article are Qian Cheng and He Bingxiang, undergraduate students in the Department of Computer Science, Tsinghua University. Both are members of THUNLP. Qian Cheng's main research interests are tool learning and large model-driven agents. He is about to study for a PhD at UIUC. He Bingxiang's main research interests are large model alignment and security, and he will soon study for a PhD at Tsinghua University. The corresponding authors of this article are Cong Xin and Lin Yankai, and the supervisor is Associate Professor Liu Zhiyuan.

Today, with the rapid development of artificial intelligence, we are constantly exploring the intelligence of machines, but we often ignore how these intelligent agents deeply understand us - their creators. Every interaction, every word, every action we humans have in life is filled with intention and emotion. But the real challenge is: how are these implicit intentions captured, parsed, and reacted to by the agent? Traditional intelligent agents respond quickly to explicit commands, but they often fail to understand complex human implicit intentions.

In recent years, language models such as GPT and LLaMA have demonstrated amazing capabilities in solving complex tasks. However, although the agents with them as their core are good at formulating strategies and executing tasks, they rarely take into account robust user interaction strategies. The tasks given by users are usually vague and short, which requires the agent to not only understand our literal requests, but also to see through our implicit intentions.

Therefore, for a new generation of intelligent agents to be implemented and used by the public, it needs to be human-centered, focusing not only on the accuracy of task execution, but also on how to establish a more natural, smooth and rich relationship with humans. Insightful communication style.

In order to make up for this lack, a joint team from Tsinghua University, Renmin University, and Tencent recently proposed a new intelligent agent interaction design plan. This work first introduces Intention-in-Interaction (IN3), a new benchmark that aims to understand users' implicit intentions through explicit interactions with users.

Using Mistral-7B as the framework and based on IN3 training, Mistral-Interact can proactively evaluate the ambiguity of tasks, query user intentions, and refine them into actionable goals before launching downstream agent task execution. After embedding the model into the XAgent framework, the article conducts a comprehensive evaluation of the fully stateful agent system.

The results show that this solution has outstanding performance in identifying ambiguous user tasks, recovering and summarizing key missing information, setting accurate and necessary agent execution goals, and reducing the use of redundant tools. This innovative method not only fills the gap in the interaction between intelligent agents and users, truly putting humans at the center of intelligent agent design, but also means that we are taking a step closer to the goal of designing intelligent agents that are more in line with human intentions.

Open and closed source model Chaos: Lets see which agent can best glimpse human beings true intentions

  • Paper title: Tell Me More! Towards Implicit User Intention Understanding of Language Model Driven Agents
  • Paper link: https://arxiv.org/abs/2402.09205
  • Code repository: https ://github.com/HBX-hbx/Mistral-Interact
  • Open source model: https://huggingface.co/hbx/Mistral-Interact
  • Open source dataset: https://huggingface.co/ datasets/hbx/IN3

Open and closed source model Chaos: Lets see which agent can best glimpse human beings true intentions

                                                                                                                                                                                                                                                       Comparison of fuzzy task and clear task execution                Current agent benchmarks often assume that a given task is clear , and does not consider user intent understanding as an important aspect of evaluation. In view of the incompleteness of evaluation indicators, this work developed the Intention-in-Interaction (IN3) benchmark, which aims to evaluate the interactive capabilities of agents through clear task ambiguity judgment and user intention understanding.
                                                                                                                                                                                                                   IN3 benchmark data construction process

Open and closed source model Chaos: Lets see which agent can best glimpse human beings true intentions As shown in the figure above, the seed task based on human writing is Step 1 , the model iteratively generates new tasks to enhance the dataset while sampling from the dataset as new examples for the next round of generation (Step 2). After this Self-Instruct generation method, the ambiguity, missing details of each task, the importance of each detail, and potential options are manually annotated (Step 3).

Mistral-Interact training process

Since large language models are at the core of agent design, this work first conducted a preliminary study to evaluate the implicit performance of current open source and closed source models in the interaction process. Formula intention understanding ability.
Specifically, the article randomly selects ten tasks from IN3, applies them to test LLaMA-2-7B-Chat, Mistral-7B-Instruct-v0.2 and GPT-4 and indicates these modelsi ) determine the ambiguity of the task, ii) ask the user for missing details when the task is ambiguous, iii) summarize the detailed user task.
                                                                                                                                                                                                          Better, but still lacking understanding of human intent problem. In contrast, GPT-4 is closest to human intention in terms of task ambiguity and important missing details. At the same time, preliminary exploration also shows that in order to further improve the agent's ability to understand implicit intentions in interaction, simple prompt engineering is not enough. It is necessary to further train based on the current open source model to achieve the goal of The degree of application of intelligent agents.

                                                                                                                                                      The construction process of training data (IN3 conversation records)

Referring to the figure above, according to IN3's annotation of task ambiguity, missing details and potential options, the article is used in the process of constructing conversation records several strategies (orange box), which includes: the construction of a clear initial reasoning chain, the construction of a query with suggested options, the construction of different user response tones, and the construction of a clear summary of the reasoning chain. These dialogue construction strategies will better stimulate the query and reasoning capabilities of the target model.

Comprehensive evaluation of agent interaction capabilities

An agent’s implicit intention understanding ability can be evaluated directly through user interaction or indirectly through the agent performing downstream tasks. Among them, user interaction focuses on intention understanding itself, while task execution focuses on the ultimate goal of intention understanding, which is to enhance the agent's ability to handle tasks.

Therefore, in order to comprehensively evaluate the interactive agent design, the article divides the experiment into two parts: i) Instruction Understanding: Evaluating the agent’s intention understanding ability during user interaction; ii) Instruction Execution : Evaluate the task execution performance of the agent after integrating the interaction model.

Instruction understanding does not involve any real-time agent execution, so the article directly evaluates the performance of different language models during the interaction process to determine their interaction capabilities as an upstream module in agent design. The results are as follows Show:

Open and closed source model Chaos: Lets see which agent can best glimpse human beings true intentions

The instructions understand the test results. Among them, the arrow represents the higher the score/ lower the capability. It performs best on indicators such as judging task ambiguity and coverage of missing details, and can make clear and comprehensive summaries based on detailed user intentions. Compared with other open source models, Mistral-Interact can provide more reasonable options for asking for missing details in fuzzy tasks, the query method is more friendly, and its performance is comparable to GPT-4.

In terms of instruction execution, in order to evaluate the effectiveness of implicit intention understanding for agent task execution, the article integrates Mistral-Interact as an upstream interaction module into the XAgent framework for testing. Among them, XAgent can interact in environments such as network search, code execution, command line and file system.

                                                                                                                                                                                       Instruction execution test results (ST stands for subtask, MS stands for milestone)

Open and closed source model Chaos: Lets see which agent can best glimpse human beings true intentions

Quantitative evaluation results show that integrating Mistral-Interact helps: i) avoid setting unnecessary goals during the execution process, ii) make the execution process of the agent more consistent with detailed user intentions, and iii) reduce unnecessary tool calls and promote the efficiency of agent tool usage.

Agent Interaction Case Analysis

In terms of command understanding, in order to further demonstrate the robustness of Mistral-Interact in different dialogue scenarios, the article also provides three case analyses.
                                                                                                       Case studies of Mistral-Interact and users in different scenarios

Case A shows the impact of different user tones and conversation styles on Mistral-Interact. The article found that regardless of whether the user's answer was short or detailed, enthusiastic or cold, or even contained spelling errors, Mistral-Interact was able to accurately understand and provide an appropriate response, proving its robustness.

In case B, it was tested whether Mistral-Interact can continue to ask questions and guide the conversation back on track when the user shows an uncooperative attitude. The results showed that even when users avoided questions, they were still able to effectively redirect the conversation.

In case C it can be observed that Mistral-Interact can incorporate additional information provided by the user into the summary, which is not explicitly asked by the interaction model. This shows that when the model's query cannot fully cover missing details or the user has specific requirements, the model is still able to reasonably and comprehensively summarize all user intentions, making it more user-friendly.

In order to more clearly illustrate the role of Mistral-Interact in terms of instruction execution, a comparative case study is provided in the figure below.

Open and closed source model Chaos: Lets see which agent can best glimpse human beings true intentions

                                                                                                                                                    The text in light red can be found when the user’s target is blurred. XAgent cannot accurately set subtasks that accurately reflect user needs. According to the text marked purple
, it can be found that XAgent often sets some unnecessary subtasks. These are because the user's task is too vague to perform, and the agent tends to fabricate unnecessary details, which is inconsistent with the user's true intention.

In contrast, clear task goals enable XAgent to formulate more specific subtasks after active interaction with Mistral-Interact. The text marked green in the figure demonstrates this consistency. At the same time, the agent execution process becomes simpler and the number of tool calls is reduced. All of these reflect a more efficient agent execution process.

Conclusion

We are standing at a new starting point, ready to witness a new chapter of human-machine collaboration, mutual understanding and learning. Intelligent agents will soon no longer be cold information processors, but empathetic partners, capable of deeply understanding our needs and desires that may not be initially clearly expressed through delicate interactive experiences. This revolution in human-centered intelligent agent design will reveal infinite possibilities in interaction, making intelligent agents truly an indispensable help in our lives.

The above is the detailed content of Open and closed source model 'Chaos': Let's see which agent can best glimpse human beings' true intentions. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners DeepMind robot plays table tennis, and its forehand and backhand slip into the air, completely defeating human beginners Aug 09, 2024 pm 04:01 PM

But maybe he can’t defeat the old man in the park? The Paris Olympic Games are in full swing, and table tennis has attracted much attention. At the same time, robots have also made new breakthroughs in playing table tennis. Just now, DeepMind proposed the first learning robot agent that can reach the level of human amateur players in competitive table tennis. Paper address: https://arxiv.org/pdf/2408.03906 How good is the DeepMind robot at playing table tennis? Probably on par with human amateur players: both forehand and backhand: the opponent uses a variety of playing styles, and the robot can also withstand: receiving serves with different spins: However, the intensity of the game does not seem to be as intense as the old man in the park. For robots, table tennis

The first mechanical claw! Yuanluobao appeared at the 2024 World Robot Conference and released the first chess robot that can enter the home The first mechanical claw! Yuanluobao appeared at the 2024 World Robot Conference and released the first chess robot that can enter the home Aug 21, 2024 pm 07:33 PM

On August 21, the 2024 World Robot Conference was grandly held in Beijing. SenseTime's home robot brand "Yuanluobot SenseRobot" has unveiled its entire family of products, and recently released the Yuanluobot AI chess-playing robot - Chess Professional Edition (hereinafter referred to as "Yuanluobot SenseRobot"), becoming the world's first A chess robot for the home. As the third chess-playing robot product of Yuanluobo, the new Guoxiang robot has undergone a large number of special technical upgrades and innovations in AI and engineering machinery. For the first time, it has realized the ability to pick up three-dimensional chess pieces through mechanical claws on a home robot, and perform human-machine Functions such as chess playing, everyone playing chess, notation review, etc.

Claude has become lazy too! Netizen: Learn to give yourself a holiday Claude has become lazy too! Netizen: Learn to give yourself a holiday Sep 02, 2024 pm 01:56 PM

The start of school is about to begin, and it’s not just the students who are about to start the new semester who should take care of themselves, but also the large AI models. Some time ago, Reddit was filled with netizens complaining that Claude was getting lazy. "Its level has dropped a lot, it often pauses, and even the output becomes very short. In the first week of release, it could translate a full 4-page document at once, but now it can't even output half a page!" https:// www.reddit.com/r/ClaudeAI/comments/1by8rw8/something_just_feels_wrong_with_claude_in_the/ in a post titled "Totally disappointed with Claude", full of

At the World Robot Conference, this domestic robot carrying 'the hope of future elderly care' was surrounded At the World Robot Conference, this domestic robot carrying 'the hope of future elderly care' was surrounded Aug 22, 2024 pm 10:35 PM

At the World Robot Conference being held in Beijing, the display of humanoid robots has become the absolute focus of the scene. At the Stardust Intelligent booth, the AI ​​robot assistant S1 performed three major performances of dulcimer, martial arts, and calligraphy in one exhibition area, capable of both literary and martial arts. , attracted a large number of professional audiences and media. The elegant playing on the elastic strings allows the S1 to demonstrate fine operation and absolute control with speed, strength and precision. CCTV News conducted a special report on the imitation learning and intelligent control behind "Calligraphy". Company founder Lai Jie explained that behind the silky movements, the hardware side pursues the best force control and the most human-like body indicators (speed, load) etc.), but on the AI ​​side, the real movement data of people is collected, allowing the robot to become stronger when it encounters a strong situation and learn to evolve quickly. And agile

ACL 2024 Awards Announced: One of the Best Papers on Oracle Deciphering by HuaTech, GloVe Time Test Award ACL 2024 Awards Announced: One of the Best Papers on Oracle Deciphering by HuaTech, GloVe Time Test Award Aug 15, 2024 pm 04:37 PM

At this ACL conference, contributors have gained a lot. The six-day ACL2024 is being held in Bangkok, Thailand. ACL is the top international conference in the field of computational linguistics and natural language processing. It is organized by the International Association for Computational Linguistics and is held annually. ACL has always ranked first in academic influence in the field of NLP, and it is also a CCF-A recommended conference. This year's ACL conference is the 62nd and has received more than 400 cutting-edge works in the field of NLP. Yesterday afternoon, the conference announced the best paper and other awards. This time, there are 7 Best Paper Awards (two unpublished), 1 Best Theme Paper Award, and 35 Outstanding Paper Awards. The conference also awarded 3 Resource Paper Awards (ResourceAward) and Social Impact Award (

Hongmeng Smart Travel S9 and full-scenario new product launch conference, a number of blockbuster new products were released together Hongmeng Smart Travel S9 and full-scenario new product launch conference, a number of blockbuster new products were released together Aug 08, 2024 am 07:02 AM

This afternoon, Hongmeng Zhixing officially welcomed new brands and new cars. On August 6, Huawei held the Hongmeng Smart Xingxing S9 and Huawei full-scenario new product launch conference, bringing the panoramic smart flagship sedan Xiangjie S9, the new M7Pro and Huawei novaFlip, MatePad Pro 12.2 inches, the new MatePad Air, Huawei Bisheng With many new all-scenario smart products including the laser printer X1 series, FreeBuds6i, WATCHFIT3 and smart screen S5Pro, from smart travel, smart office to smart wear, Huawei continues to build a full-scenario smart ecosystem to bring consumers a smart experience of the Internet of Everything. Hongmeng Zhixing: In-depth empowerment to promote the upgrading of the smart car industry Huawei joins hands with Chinese automotive industry partners to provide

Li Feifei's team proposed ReKep to give robots spatial intelligence and integrate GPT-4o Li Feifei's team proposed ReKep to give robots spatial intelligence and integrate GPT-4o Sep 03, 2024 pm 05:18 PM

Deep integration of vision and robot learning. When two robot hands work together smoothly to fold clothes, pour tea, and pack shoes, coupled with the 1X humanoid robot NEO that has been making headlines recently, you may have a feeling: we seem to be entering the age of robots. In fact, these silky movements are the product of advanced robotic technology + exquisite frame design + multi-modal large models. We know that useful robots often require complex and exquisite interactions with the environment, and the environment can be represented as constraints in the spatial and temporal domains. For example, if you want a robot to pour tea, the robot first needs to grasp the handle of the teapot and keep it upright without spilling the tea, then move it smoothly until the mouth of the pot is aligned with the mouth of the cup, and then tilt the teapot at a certain angle. . this

Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, the father of reinforcement learning, will attend! Yan Shuicheng, Sergey Levine and DeepMind scientists will give keynote speeches Distributed Artificial Intelligence Conference DAI 2024 Call for Papers: Agent Day, Richard Sutton, the father of reinforcement learning, will attend! Yan Shuicheng, Sergey Levine and DeepMind scientists will give keynote speeches Aug 22, 2024 pm 08:02 PM

Conference Introduction With the rapid development of science and technology, artificial intelligence has become an important force in promoting social progress. In this era, we are fortunate to witness and participate in the innovation and application of Distributed Artificial Intelligence (DAI). Distributed artificial intelligence is an important branch of the field of artificial intelligence, which has attracted more and more attention in recent years. Agents based on large language models (LLM) have suddenly emerged. By combining the powerful language understanding and generation capabilities of large models, they have shown great potential in natural language interaction, knowledge reasoning, task planning, etc. AIAgent is taking over the big language model and has become a hot topic in the current AI circle. Au

See all articles