How to find memory leaks in C++ using Valgrind or AddressSanitizer?
To find memory leaks in C, you can take advantage of Valgrind and AddressSanitizer. Valgrind dynamically detects leaks, showing address, size and call stack. AddressSanitizer is a Clang compiler plugin that detects memory errors and leaks. To enable ASan leak checking, use the --leak-check=full option when compiling, which will report leaks after the program is run.
How to use Valgrind or AddressSanitizer to find memory leaks in C
Introduction
Memory leaks is a common problem in languages like C. To detect and resolve these leaks, tools like Valgrind and AddressSanitizer can be used.
Use Valgrind to find memory leaks
Valgrind is a dynamic memory debugging tool that can detect memory leaks. To use Valgrind:
valgrind ./my_program
Valgrind will run the program and report any detected memory leaks. The output will show the leaked address, size, and call stack.
Example
The following C code example demonstrates how Valgrind detects memory leaks:
int* ptr = new int[10]; // ... // 忘记释放 ptr
Running this code and using Valgrind will output the following results:
==8445== LeakSanitizer: detected memory leaks ==8445== Direct leak of 40 bytes in 1 object(s) allocated from: #0 0x49f2c0 in default_new_allocator_000000157013e0000000 ::operator() () (_libunwind.dylib:0x103d8e000) #1 0x41626f in create_array () in /tmp/a.out:10 #2 0x415b2d in main () in /tmp/a.out:15 SUMMARY: ==8445== LEAK SUMMARY: ==8445== definitely lost: 40 bytes in 1 object(s)
The output shows that 40 bytes were leaked and allocated at address 0x49f2c0.
Finding memory leaks using AddressSanitizer
AddressSanitizer (ASan) is a Clang compiler plugin that can detect memory errors, including memory leaks. To use ASan:
clang++ -fsanitize=address ...
ASan will detect memory access errors and generate a crash report when an error occurs. To check for memory leaks, run the program twice:
./my_program # 第一次运行 ./my_program --leak-check=full # 第二次运行,启用泄漏检查
The second run will report any detected memory leaks.
Example
The following C code example demonstrates how AddressSanitizer detects memory leaks:
int* ptr = new int[10]; // ... // 忘记释放 ptr
Compiling and running this code, with ASan enabled, will output the following results:
==28847== ERROR: AddressSanitizer: detected memory leaks SUMMARY: ==28847== LeakSanitizer: 40 byte(s) leaked in 1 allocation(s). ==28847== 0x7fdd1b000010 40 bytes in 1 block ==28847== LeakSanitizer: ==28847== Direct leak of 40 bytes in 1 object(s) allocated from: ==28847== #0 0x7fdd17a346c0 in __sanitizer::Allocator<std::__detail::__shared_count>::allocate(unsigned long) (_sanitizer.h:1195) ==28847== #1 0x7fdd184d0f90 in void* std::__detail::__shared_count<unsigned int>::allocate() (_shared_count.h:128) ==28847== #2 0x7fdd182de485 in void* std::__shared_ptr<int>::__clone() (_shared_ptr.h:256) ==28847== #3 0x48b935 in create_array() (/tmp/a.out:10) ==28847== #4 0x48b884 in main (/tmp/a.out:15)
The output shows that 40 bytes were leaked and allocated at address 0x7fdd1b000010.
The above is the detailed content of How to find memory leaks in C++ using Valgrind or AddressSanitizer?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Diablo 4 Memory Leak Issue on Windows: 13 Ways to Fix Memory leaks in Diablo 4 can be caused by a variety of issues. The game is still in development, so issues like this are to be expected. The main cause of the memory leak appears to be the texture quality settings in Diablo 4. We recommend you to start with the first fix mentioned below and then go through the list until you manage to resolve the issue. let's start. Method 1: Set Texture Quality to Medium or Low "High" texture quality seems to be the main cause of memory leaks in Diablo 4. This appears to be an unexpected bug, as users with high-end GPUs and workstations have also reported this as a potential fix. Go to your dark

Common memory management problems and solutions in C#, specific code examples are required. In C# development, memory management is an important issue. Incorrect memory management may lead to memory leaks and performance problems. This article will introduce readers to common memory management problems in C#, provide solutions, and give specific code examples. I hope it can help readers better understand and master memory management technology. The garbage collector does not release resources in time. The garbage collector (GarbageCollector) in C# is responsible for automatically releasing resources and no longer using them.

The reasons for the leak are: 1. The use of time.After(). Each time.After(duration x) will generate NewTimer(). Before the duration x expires, the newly created timer will not be GC. GC; 2. time.NewTicker resources are not released in time; 3. select blocking; 4. channel blocking; 5. applying for too many goroutines, goroutine blocking; 6. caused by slice, etc.

The pprof tool can be used to analyze the memory usage of Go applications and detect memory leaks. It provides memory profile generation, memory leak identification and real-time analysis capabilities. Generate a memory snapshot by using pprof.Parse and identify the data structures with the most memory allocations using the pprof-allocspace command. At the same time, pprof supports real-time analysis and provides endpoints to remotely access memory usage information.

Methods to solve the problem of memory leak location in Go language development: Memory leak is one of the common problems in program development. In Go language development, due to the existence of its automatic garbage collection mechanism, memory leak problems may be less than other languages. However, when we face large and complex applications, memory leaks may still occur. This article will introduce some common methods to locate and solve memory leak problems in Go language development. First, we need to understand what a memory leak is. Simply put, a memory leak refers to the

Memory leaks caused by closures include: 1. Infinite loops and recursive calls; 2. Global variables are referenced inside the closure; 3. Uncleanable objects are referenced inside the closure. Detailed introduction: 1. Infinite loops and recursive calls. When a closure refers to an external variable internally, and this closure is repeatedly called by external code, it may cause a memory leak. This is because each call will cause a memory leak in the memory. Create a new scope in the scope, and this scope will not be cleaned up by the garbage collection mechanism; 2. Global variables are referenced inside the closure, if global variables are referenced inside the closure, etc.

Title: Memory leaks caused by closures and solutions Introduction: Closures are a very common concept in JavaScript, which allow internal functions to access variables of external functions. However, closures can cause memory leaks if used incorrectly. This article will explore the memory leak problem caused by closures and provide solutions and specific code examples. 1. Memory leaks caused by closures The characteristic of closures is that internal functions can access variables of external functions, which means that variables referenced in closures will not be garbage collected. If used improperly,

Difference: Memory overflow means that when the program applies for memory, there is not enough memory space for it to use, and the system can no longer allocate the space you need; memory leak means that the program cannot release the applied memory space after applying for memory. , the harm of a memory leak can be ignored, but too many memory leaks will lead to memory overflow.
