


Build an efficient C++ server architecture to handle high concurrent requests
Answer: The key to building an efficient server architecture in C++ is the use of event-driven architecture, non-blocking I/O, and thread pools. Detailed description: Event-driven architecture: The server uses an event loop to listen for events on network sockets to avoid blocking. Non-blocking I/O: Allows the server to perform I/O operations without blocking the event loop, improving concurrency. Thread pool: Allocate idle threads to handle new requests to prevent server performance degradation due to the creation of too many threads.
Build an efficient C++ server architecture to handle high-concurrency requests
In modern Internet applications, high-concurrency processing capabilities are crucial important. As a programming language with excellent performance, C++ is very suitable for building efficient server architecture. This article will introduce how to use C++ to build a high-performance, scalable server, and demonstrate its application through a practical case.
Event-driven architecture
For high-concurrency servers, event-driven architecture is an ideal choice. In this architecture, the server does not block on I/O operations, but uses an event loop to listen for events on the network socket. Whenever a socket becomes readable or writable, the event loop triggers a callback function.
Non-blocking I/O
Non-blocking I/O allows the server to perform I/O operations without blocking the event loop. This is important for handling large numbers of concurrent connections, as blocking I/O prevents the server from processing other requests in a timely manner.
Thread pool
Thread pool can effectively improve the concurrency of the server. When a new request arrives, the server can assign the request to an idle thread in the thread pool for processing. This prevents the server from slowing down performance by creating too many threads.
Practical case: Web server
Let us use a practical case of Web server to illustrate how to build an efficient C++ server architecture:
#include <boost/asio.hpp> #include <iostream> #include <string> using namespace boost::asio; using namespace boost::asio::ip; class WebServer { public: WebServer(io_service& io_service, unsigned short port) : acceptor_(io_service, tcp::endpoint(tcp::v4(), port)) { start_accept(); } private: void start_accept() { acceptor_.async_accept( [this](boost::system::error_code ec, tcp::socket socket) { if (!ec) { handle_connection(std::move(socket)); } start_accept(); }); } void handle_connection(tcp::socket socket) { // 读取 HTTP 请求 std::string request; std::size_t len = socket.read_some( boost::asio::buffer(request), boost::asio::transfer_all()); // 处理请求并生成响应 std::string response = "HTTP/1.1 200 OK\r\n\r\nHello World!\n"; // 发送 HTTP 响应 socket.write_some(boost::asio::buffer(response)); } io_service& io_service_; tcp::acceptor acceptor_; }; int main() { io_service io_service; WebServer server(io_service, 8080); io_service.run(); return 0; }
This web server uses event-driven architecture, non-blocking I/O and thread pools to achieve high concurrency processing. It is ideal for handling large numbers of concurrent requests.
The above is the detailed content of Build an efficient C++ server architecture to handle high concurrent requests. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The history and evolution of C# and C are unique, and the future prospects are also different. 1.C was invented by BjarneStroustrup in 1983 to introduce object-oriented programming into the C language. Its evolution process includes multiple standardizations, such as C 11 introducing auto keywords and lambda expressions, C 20 introducing concepts and coroutines, and will focus on performance and system-level programming in the future. 2.C# was released by Microsoft in 2000. Combining the advantages of C and Java, its evolution focuses on simplicity and productivity. For example, C#2.0 introduced generics and C#5.0 introduced asynchronous programming, which will focus on developers' productivity and cloud computing in the future.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Executing code in VS Code only takes six steps: 1. Open the project; 2. Create and write the code file; 3. Open the terminal; 4. Navigate to the project directory; 5. Execute the code with the appropriate commands; 6. View the output.
