基python实现多线程网页爬虫
一般来说,使用线程有两种模式, 一种是创建线程要执行的函数, 把这个函数传递进Thread对象里,让它来执行. 另一种是直接从Thread继承,创建一个新的class,把线程执行的代码放到这个新的class里。
实现多线程网页爬虫,采用了多线程和锁机制,实现了广度优先算法的网页爬虫。
先给大家简单介绍下我的实现思路:
对于一个网络爬虫,如果要按广度遍历的方式下载,它是这样的:
1.从给定的入口网址把第一个网页下载下来
2.从第一个网页中提取出所有新的网页地址,放入下载列表中
3.按下载列表中的地址,下载所有新的网页
4.从所有新的网页中找出没有下载过的网页地址,更新下载列表
5.重复3、4两步,直到更新后的下载列表为空表时停止
python代码如下:
#!/usr/bin/env python #coding=utf-8 import threading import urllib import re import time g_mutex=threading.Condition() g_pages=[] #从中解析所有url链接 g_queueURL=[] #等待爬取的url链接列表 g_existURL=[] #已经爬取过的url链接列表 g_failedURL=[] #下载失败的url链接列表 g_totalcount=0 #下载过的页面数 class Crawler: def __init__(self,crawlername,url,threadnum): self.crawlername=crawlername self.url=url self.threadnum=threadnum self.threadpool=[] self.logfile=file("log.txt",'w') def craw(self): global g_queueURL g_queueURL.append(url) depth=0 print self.crawlername+" 启动..." while(len(g_queueURL)!=0): depth+=1 print 'Searching depth ',depth,'...\n\n' self.logfile.write("URL:"+g_queueURL[0]+"........") self.downloadAll() self.updateQueueURL() content='\n>>>Depth '+str(depth)+':\n' self.logfile.write(content) i=0 while i<len(g_queueURL): content=str(g_totalcount+i)+'->'+g_queueURL[i]+'\n' self.logfile.write(content) i+=1 def downloadAll(self): global g_queueURL global g_totalcount i=0 while i<len(g_queueURL): j=0 while j<self.threadnum and i+j < len(g_queueURL): g_totalcount+=1 threadresult=self.download(g_queueURL[i+j],str(g_totalcount)+'.html',j) if threadresult!=None: print 'Thread started:',i+j,'--File number =',g_totalcount j+=1 i+=j for thread in self.threadpool: thread.join(30) threadpool=[] g_queueURL=[] def download(self,url,filename,tid): crawthread=CrawlerThread(url,filename,tid) self.threadpool.append(crawthread) crawthread.start() def updateQueueURL(self): global g_queueURL global g_existURL newUrlList=[] for content in g_pages: newUrlList+=self.getUrl(content) g_queueURL=list(set(newUrlList)-set(g_existURL)) def getUrl(self,content): reg=r'"(http://.+?)"' regob=re.compile(reg,re.DOTALL) urllist=regob.findall(content) return urllist class CrawlerThread(threading.Thread): def __init__(self,url,filename,tid): threading.Thread.__init__(self) self.url=url self.filename=filename self.tid=tid def run(self): global g_mutex global g_failedURL global g_queueURL try: page=urllib.urlopen(self.url) html=page.read() fout=file(self.filename,'w') fout.write(html) fout.close() except Exception,e: g_mutex.acquire() g_existURL.append(self.url) g_failedURL.append(self.url) g_mutex.release() print 'Failed downloading and saving',self.url print e return None g_mutex.acquire() g_pages.append(html) g_existURL.append(self.url) g_mutex.release() if __name__=="__main__": url=raw_input("请输入url入口:\n") threadnum=int(raw_input("设置线程数:")) crawlername="小小爬虫" crawler=Crawler(crawlername,url,threadnum) crawler.craw()
以上代码就是给大家分享的基python实现多线程网页爬虫,希望大家喜欢。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python is better than C in development efficiency, but C is higher in execution performance. 1. Python's concise syntax and rich libraries improve development efficiency. 2.C's compilation-type characteristics and hardware control improve execution performance. When making a choice, you need to weigh the development speed and execution efficiency based on project needs.
