Python数据类型详解(三)元祖:tuple
一.基本数据类型
整数:int
字符串:str(注:\t等于一个tab键)
布尔值: bool
列表:list
列表用[]
元祖:tuple
元祖用()
字典:dict
注:所有的数据类型都存在想对应的类列里,元祖和列表功能一样,列表可以修改,元祖不能修改。
二.列表所有数据类型:
基本操作:
索引,切片,长度,包含,循环
class tuple(object): """ tuple() -> empty tuple tuple(iterable) -> tuple initialized from iterable's items If the argument is a tuple, the return value is the same object. """ def count(self, value): # real signature unknown; restored from __doc__ """ T.count(value) -> integer -- return number of occurrences of value """ (T.count(价值)- >整数,返回值的出现次数) return 0 def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__ """ T.index(value, [start, [stop]]) -> integer -- return first index of value. Raises ValueError if the value is not present. """ (T。指数(价值,[开始,[不要]])- >整数,返回第一索引值。提出了ValueError如果不存在的价值。) return 0 def __add__(self, *args, **kwargs): # real signature unknown """ Return self+value. """ pass def __contains__(self, *args, **kwargs): # real signature unknown """ Return key in self. """ pass def __eq__(self, *args, **kwargs): # real signature unknown """ Return self==value. """ pass def __getattribute__(self, *args, **kwargs): # real signature unknown """ Return getattr(self, name). """ pass def __getitem__(self, *args, **kwargs): # real signature unknown """ Return self[key]. """ pass def __getnewargs__(self, *args, **kwargs): # real signature unknown pass def __ge__(self, *args, **kwargs): # real signature unknown """ Return self>=value. """ pass def __gt__(self, *args, **kwargs): # real signature unknown """ Return self>value. """ pass def __hash__(self, *args, **kwargs): # real signature unknown """ Return hash(self). """ pass def __init__(self, seq=()): # known special case of tuple.__init__ """ tuple() -> empty tuple tuple(iterable) -> tuple initialized from iterable's items If the argument is a tuple, the return value is the same object. # (copied from class doc) """ pass def __iter__(self, *args, **kwargs): # real signature unknown """ Implement iter(self). """ pass def __len__(self, *args, **kwargs): # real signature unknown """ Return len(self). """ pass def __le__(self, *args, **kwargs): # real signature unknown """ Return self<=value. """ pass def __lt__(self, *args, **kwargs): # real signature unknown """ Return self<value. """ pass def __mul__(self, *args, **kwargs): # real signature unknown """ Return self*value.n """ pass @staticmethod # known case of __new__ def __new__(*args, **kwargs): # real signature unknown """ Create and return a new object. See help(type) for accurate signature. """ pass def __ne__(self, *args, **kwargs): # real signature unknown """ Return self!=value. """ pass def __repr__(self, *args, **kwargs): # real signature unknown """ Return repr(self). """ pass def __rmul__(self, *args, **kwargs): # real signature unknown """ Return self*value. """ pass
三.所有元祖数据类型举例
#count 用于计算元素出现的个数 name_tuple = ("zhangyanlin","suoning","nick") print(name_tuple.count('zhangyanlin')) #index获取指定元素的指定位置 name_tuple = ("zhangyanlin","suoning","nick") print(name_tuple.index('zhangyanlin'))
四.索引
name_tuple = ("zhangyanlin","suoning","nick") print(name_tuple[1])
五.切片
#取出第一位到最后一位减1的元素 name_tuple = ("zhangyanlin","suoning","nick") print(name_tuple[0:len(name_tuple)-1])
六.总长度len
#取出最后一位减1的元素 name_tuple = ("zhangyanlin","suoning","nick") print(name_tuple[len(name_tuple)-1])
七.for循环
name_tuple = ("zhangyanlin","suoning","nick") for i in name_tuple: print(i)
那么使用 tuple 有什么好处呢?
Tuple 比 list 操作速度快。如果您定义了一个值的常量集,并且唯一要用它做的是不断地遍历它,请使用 tuple 代替 list。
如果对不需要修改的数据进行 “写保护”,可以使代码更安全。使用 tuple 而不是 list 如同拥有一个隐含的 assert 语句,说明这一数据是常量。如果必须要改变这些值,则需要执行 tuple 到 list 的转换 (需要使用一个特殊的函数)。
还记得我说过 dictionary keys 可以是字符串,整数和 “其它几种类型”吗?Tuples 就是这些类型之一。Tuples 可以在 dictionary 中被用做 key,但是 list 不行。实际上,事情要比这更复杂。Dictionary key 必须是不可变的。Tuple 本身是不可改变的,但是如果您有一个 list 的 tuple,那就认为是可变的了,用做 dictionary key 就是不安全的。只有字符串、整数或其它对 dictionary 安全的 tuple 才可以用作 dictionary key。
Tuples 可以用在字符串格式化中,我们会很快看到。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Python is suitable for data science, web development and automation tasks, while C is suitable for system programming, game development and embedded systems. Python is known for its simplicity and powerful ecosystem, while C is known for its high performance and underlying control capabilities.

You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python excels in gaming and GUI development. 1) Game development uses Pygame, providing drawing, audio and other functions, which are suitable for creating 2D games. 2) GUI development can choose Tkinter or PyQt. Tkinter is simple and easy to use, PyQt has rich functions and is suitable for professional development.

You can learn the basics of Python within two hours. 1. Learn variables and data types, 2. Master control structures such as if statements and loops, 3. Understand the definition and use of functions. These will help you start writing simple Python programs.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.

To maximize the efficiency of learning Python in a limited time, you can use Python's datetime, time, and schedule modules. 1. The datetime module is used to record and plan learning time. 2. The time module helps to set study and rest time. 3. The schedule module automatically arranges weekly learning tasks.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.
