Home Database Mysql Tutorial 哈希连接(hash join) 原理

哈希连接(hash join) 原理

Jun 07, 2016 pm 05:32 PM

这三类表连接方式是Oracle最基本的连接方式:嵌套循环连接(nested loops join)原理 排序合并连接(sort merge join)的原理 哈希连

这三类表连接方式是Oracle最基本的连接方式:
嵌套循环连接(nested loops join)原理
排序合并连接(sort merge join)的原理

哈希连接(hashjoin)

访问次数:驱动表和被驱动表都只会访问0次或1次。
驱动表是否有顺序:有。
是否要排序:否。
应用场景: 1. 一个大表,一个小表的关联;
2. 表上没有索引;
3. 返回结果集比较大。

原理我们说的简单一点,先把驱动表的关联字段hash到PGA中(当然rowid也在PGA中),然后扫描被驱动表,,取第一条数据,将关联的字段hash 一下探测PGA中的小表,如果匹配则关联,再取第二条........。

下面我们来做个试验:

SQL> create table test1 as select * from dba_objects where rownum SQL> create table test2 as select * from dba_objects where rownum SQL> exec dbms_stats.gather_table_stats(user,'test1');
SQL> exec dbms_stats.gather_table_stats(user,'test2');
SQL> alter session set statistics_level=all;

SQL> select /*+leading(t1) use_hash(t2)*/count(*)
from test1 t1, test2 t2
where t1.object_id = t2.object_id;
COUNT(*)
----------
100

SQL> select * from table(dbms_xplan.display_cursor(null,null,'allstats last'));
PLAN_TABLE_OUTPUT
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
SQL_ID 3f2mts0kt82u2, child number 0
-------------------------------------
select /*+leading(t1) use_hash(t2)*/count(*) from test1 t1, test2 t2 where t1.object_id = t2.object_id
Plan hash value: 2544416891

----解释一下:

Starts为该sql执行的次数。
E-Rows为执行计划预计的行数。
A-Rows为实际返回的行数。A-Rows跟E-Rows做比较,就可以确定哪一步执行计划出了问题。
A-Time为每一步实际执行的时间(HH:MM:SS.FF),根据这一行可以知道该sql耗时在了哪个地方。
Buffers为每一步实际执行的逻辑读或一致性读。
Reads为物理读。
OMem、1Mem为执行所需的内存评估值,0Mem为最优执行模式所需内存的评估值,1Mem为one-pass模式所需内存的评估值。
0/1/M 为最优/one-pass/multipass执行的次数。
Used-Mem耗的内存

------------------------------------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers | OMem | 1Mem | Used-Mem |
------------------------------------------------------------------------------------------------------------------
| 1 | SORT AGGREGATE | | 1 | 1 | 1 |00:00:00.01 | 19 | | | |
|* 2 | HASH JOIN | | 1 | 100 | 100 |00:00:00.01 | 19 | 1066K| 1066K| 1162K (0)|
| 3 | TABLE ACCESS FULL| TEST1 | 1| 100 | 100 |00:00:00.01 | 4 | | | |
| 4 | TABLE ACCESS FULL| TEST2 | 1 | 1000 | 1000 |00:00:00.01 | 15 | | | |
------------------------------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("T1"."OBJECT_ID"="T2"."OBJECT_ID")


SQL> select /*+leading(t1) use_hash (t2)*/count(*)
from test1 t1, test2 t2
where t1.object_id = t2.object_id
and t1.object_id = 99999;
COUNT(*)
----------
0

更多详情见请继续阅读下一页的精彩内容

linux

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

When might a full table scan be faster than using an index in MySQL? When might a full table scan be faster than using an index in MySQL? Apr 09, 2025 am 12:05 AM

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Can I install mysql on Windows 7 Can I install mysql on Windows 7 Apr 08, 2025 pm 03:21 PM

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

Explain InnoDB Full-Text Search capabilities. Explain InnoDB Full-Text Search capabilities. Apr 02, 2025 pm 06:09 PM

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Difference between clustered index and non-clustered index (secondary index) in InnoDB. Difference between clustered index and non-clustered index (secondary index) in InnoDB. Apr 02, 2025 pm 06:25 PM

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values ​​and pointers to data rows, and is suitable for non-primary key column queries.

MySQL: Simple Concepts for Easy Learning MySQL: Simple Concepts for Easy Learning Apr 10, 2025 am 09:29 AM

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

Can mysql and mariadb coexist Can mysql and mariadb coexist Apr 08, 2025 pm 02:27 PM

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

The relationship between mysql user and database The relationship between mysql user and database Apr 08, 2025 pm 07:15 PM

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

Explain different types of MySQL indexes (B-Tree, Hash, Full-text, Spatial). Explain different types of MySQL indexes (B-Tree, Hash, Full-text, Spatial). Apr 02, 2025 pm 07:05 PM

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.

See all articles