Oracle的timestamp类型使用
我们都知道date和timestamp都是对日期和时间的表示,只是两种类型的精确度不同,前者精确到秒,后者精确到小数秒(fractional_se
我们都知道date和timestamp都是对日期和时间的表示,只是两种类型的精确度不同,,前者精确到秒,后者精确到小数秒(fractional_seconds_precision),可以是 0 to 9,缺省是6。
但是对date类型的运算很简单,有很多函数可用来处理;而两个timestamp的差则是很直观地显示为多少天+多少小时+多少分钟+多少秒+多少小数秒,
SQL> create table test (T1 TIMESTAMP(6),
2 T2 TIMESTAMP(6));
表已创建。
SQL> insert into test values(
2 to_timestamp('2006-01-01 12:10:10.1','yyyy-mm-dd hh24:mi:ss.ff'),
3 to_timestamp('2006-01-01 12:20:10.2','yyyy-mm-dd hh24:mi:ss.ff'));
已创建 1 行。
SQL>
SQL> insert into test values(
2 to_timestamp('2006-01-01 12:10:10.1','yyyy-mm-dd hh24:mi:ss.ff'),
3 to_timestamp('2006-01-02 12:20:10.2','yyyy-mm-dd hh24:mi:ss.ff'));
已创建 1 行。
SQL>
SQL> insert into test values(
2 to_timestamp('2006-01-01 12:10:10.1','yyyy-mm-dd hh24:mi:ss.ff'),
3 to_timestamp('2006-01-02 13:40:20.2','yyyy-mm-dd hh24:mi:ss.ff'));
已创建 1 行。
SQL> commit;
提交完成。
SQL>
两个timestamp的差则是很直观地显示为多少天+多少小时+多少分钟+多少秒+多少小数秒:
SQL> select t2-t1 from test;
+000000000 00:10:00.100000
+000000001 00:10:00.100000
+000000001 01:30:10.100000
SQL>
但要简单地转化为某一个精度却比较麻烦,用类似date类型的处理方法是不行的。如转化为分:
SQL> select 1440*(t2-t1) from test;
+000000010 00:02:24.000000000
+000001450 00:02:24.000000000
+000001530 04:02:24.000000000
SQL>
发现结果根本不是原先想要的,而是在原先的“多少天+多少小时+多少分钟+多少秒+多少小数秒”的每一项都乘以1440再进行进制处理。
最容易理解的就是用substr将两个timestamp的差进行分割转化处理:
SQL> SELECT substr((t2-t1),instr((t2-t1),' ')+7,2) seconds,
2 substr((t2-t1),instr((t2-t1),' ')+4,2) minutes,
3 substr((t2-t1),instr((t2-t1),' ')+1,2) hours,
4 trunc(to_number(substr((t2-t1),1,instr(t2-t1,' ')))) days,
5 trunc(to_number(substr((t2-t1),1,instr(t2-t1,' ')))/7) weeks
6 FROM test;
SECO MINU HOUR DAYS WEEKS
---- ---- ---- ---------- ----------
00 10 00 0 0
00 10 00 1 0
10 30 01 1 0
或者利用自定义函数来实现将天数转换成“天时分秒”格式:
RETURN VARCHAR2 IS
DAYSVDVHVMVSRESULT VARCHAR2(VD := TRUNC(DAYS);
VM := TRUNC((DAYS - VD - VH / VS := TRUNC((DAYS - VD - VH / SELECT DECODE(VD, INTO RESULT FROM DUAL;
RETURN(RESULT);
END;
SQL>
如果最后结果的精度要求不高时(在分或分以上时),就可以先将timestamp转化为date再结算,这样就简单多了:
SQL> select (to_date(to_char(t2,'yyyy-mm-dd hh24:mi:ss'),'yyyy-mm-dd hh24:mi:ss'
)-to_date(to_char(t1,'yyyy-mm-dd hh24:mi:ss'),'yyyy-mm-dd hh24:mi:ss'))*24*60
2 from test;
10
1450
1530.16667
date转换为timestamp:
SELECT CAST(sysdate AS TIMESTAMP) from dual;

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

MySQL and MariaDB can coexist, but need to be configured with caution. The key is to allocate different port numbers and data directories to each database, and adjust parameters such as memory allocation and cache size. Connection pooling, application configuration, and version differences also need to be considered and need to be carefully tested and planned to avoid pitfalls. Running two databases simultaneously can cause performance problems in situations where resources are limited.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.
