Sharing of common usage scenarios of Redis
This article mainly shares with you common usage scenarios of Redis and simple string caching practice. I hope it can help you.
$redis->connect('127.0.0.1', 6379); $strCacheKey = 'Test_bihu';//SET 应用$arrCacheData = [ 'name' => 'job', 'sex' => '男', 'age' => '30']; $redis->set($strCacheKey, json_encode($arrCacheData)); $redis->expire($strCacheKey, 30); # 设置30秒后过期$json_data = $redis->get($strCacheKey); $data = json_decode($json_data); print_r($data->age); //输出数据//HSET 应用$arrWebSite = [ 'google' => [ 'google.com', 'google.com.hk' ], ]; $redis->hSet($strCacheKey, 'google', json_encode($arrWebSite['google'])); $json_data = $redis->hGet($strCacheKey, 'google'); $data = json_decode($json_data); print_r($data); //输出数据
Simple queue practice
$redis->connect('127.0.0.1', 6379); $strQueueName = 'Test_bihu_queue';//进队列$redis->rpush($strQueueName, json_encode(['uid' => 1,'name' => 'Job'])); $redis->rpush($strQueueName, json_encode(['uid' => 2,'name' => 'Tom'])); $redis->rpush($strQueueName, json_encode(['uid' => 3,'name' => 'John']));echo "---- 进队列成功 ---- <br /><br />";//查看队列$strCount = $redis->lrange($strQueueName, 0, -1);echo "当前队列数据为: <br />"; print_r($strCount);//出队列$redis->lpop($strQueueName);echo "<br /><br /> ---- 出队列成功 ---- <br /><br />";//查看队列$strCount = $redis->lrange($strQueueName, 0, -1);echo "当前队列数据为: <br />"; print_r($strCount);
Simple publish and subscribe practice
//以下是 pub.php 文件的内容 cli下运行ini_set('default_socket_timeout', -1); $redis->connect('127.0.0.1', 6379); $strChannel = 'Test_bihu_channel';//发布$redis->publish($strChannel, "来自{$strChannel}频道的推送");echo "---- {$strChannel} ---- 频道消息推送成功~ <br/>"; $redis->close();
Simple counter practice
//以下是 sub.php 文件内容 cli下运行ini_set('default_socket_timeout', -1); $redis->connect('127.0.0.1', 6379); $strChannel = 'Test_bihu_channel';//订阅echo "---- 订阅{$strChannel}这个频道,等待消息推送...---- <br/><br/>"; $redis->subscribe([$strChannel], 'callBackFun');function callBackFun($redis, $channel, $msg){ print_r([ 'redis' => $redis, 'channel' => $channel, 'msg' => $msg ]); }
Ranking practice
$redis->connect('127.0.0.1', 6379); $strKey = 'Test_bihu_comments';//设置初始值$redis->set($strKey, 0); $redis->INCR($strKey); //+1$redis->INCR($strKey); //+1$redis->INCR($strKey); //+1$strNowCount = $redis->get($strKey);echo "---- 当前数量为{$strNowCount}。 ---- ";
$redis->connect('127.0.0.1', 6379); $strKey = 'Test_bihu_score';//存储数据$redis->zadd($strKey, '50', json_encode(['name' => 'Tom'])); $redis->zadd($strKey, '70', json_encode(['name' => 'John'])); $redis->zadd($strKey, '90', json_encode(['name' => 'Jerry'])); $redis->zadd($strKey, '30', json_encode(['name' => 'Job'])); $redis->zadd($strKey, '100', json_encode(['name' => 'LiMing'])); $dataOne = $redis->ZREVRANGE($strKey, 0, -1, true);echo "---- {$strKey}由大到小的排序 ---- <br /><br />"; print_r($dataOne); $dataTwo = $redis->ZRANGE($strKey, 0, -1, true);echo "<br /><br />---- {$strKey}由小到大的排序 ---- <br /><br />"; print_r($dataTwo);
Explanation: Pessimistic Lock, as the name suggests, is very pessimistic.
Every time I go to get the data, I think that others will modify it, so I lock it every time I get the data.
Scenario: If cache is used in the project and a timeout is set for the cache.
When the amount of concurrency is relatively large, if there is no lock mechanism, then the moment the cache expires,
A large number of concurrent requests will penetrate the cache and directly query the database, causing an avalanche effect.
/** * 获取锁 * @param String $key 锁标识 * @param Int $expire 锁过期时间 * @return Boolean */public function lock($key = '', $expire = 5) { $is_lock = $this->_redis->setnx($key, time()+$expire); //不能获取锁 if(!$is_lock){ //判断锁是否过期 $lock_time = $this->_redis->get($key); //锁已过期,删除锁,重新获取 if (time() > $lock_time) { unlock($key); $is_lock = $this->_redis->setnx($key, time() + $expire); } } return $is_lock? true : false; }/** * 释放锁 * @param String $key 锁标识 * @return Boolean */public function unlock($key = ''){ return $this->_redis->del($key); }// 定义锁标识$key = 'Test_bihu_lock';// 获取锁$is_lock = lock($key, 10);if ($is_lock) { echo 'get lock success<br>'; echo 'do sth..<br>'; sleep(5); echo 'success<br>'; unlock($key); } else { //获取锁失败 echo 'request too frequently<br>'; }
Optimistic locking practice for simple transactions
Explanation: Optimistic Lock (Optimistic Lock), as the name suggests, is very optimistic.
Every time I go to get the data, I think that others will not modify it, so it will not be locked.
The watch command will monitor the given key. If the monitored key has changed since calling watch during exec, the entire transaction will fail.
You can also call watch multiple times to monitor multiple keys. In this way, optimistic locking can be added to the specified key.
Note that the watch key is valid for the entire connection, and the same is true for transactions.
If the connection is disconnected, monitoring and transactions will be automatically cleared.
Of course, the exec, discard, and unwatch commands will clear all monitoring in the connection.
$strKey = 'Test_bihu_age'; $redis->set($strKey,10); $age = $redis->get($strKey);echo "---- Current Age:{$age} ---- <br/><br/>"; $redis->watch($strKey);// 开启事务$redis->multi();//在这个时候新开了一个新会话执行$redis->set($strKey,30); //新会话echo "---- Current Age:{$age} ---- <br/><br/>"; //30$redis->set($strKey,20); $redis->exec(); $age = $redis->get($strKey);echo "---- Current Age:{$age} ---- <br/><br/>"; //30//当exec时候如果监视的key从调用watch后发生过变化,则整个事务会失败
Related recommendations:
PHP link redis method code
A simple example sharing of php+redis
The above is the detailed content of Sharing of common usage scenarios of Redis. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

Using the Redis directive requires the following steps: Open the Redis client. Enter the command (verb key value). Provides the required parameters (varies from instruction to instruction). Press Enter to execute the command. Redis returns a response indicating the result of the operation (usually OK or -ERR).

Using Redis to lock operations requires obtaining the lock through the SETNX command, and then using the EXPIRE command to set the expiration time. The specific steps are: (1) Use the SETNX command to try to set a key-value pair; (2) Use the EXPIRE command to set the expiration time for the lock; (3) Use the DEL command to delete the lock when the lock is no longer needed.

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information
