Table of Contents
SELECT
INSERT
DELETE
UPDATE
Home Database Mysql Tutorial [MySQL] Multi-version concurrency control

[MySQL] Multi-version concurrency control

Feb 25, 2017 am 10:24 AM


The implementation of most transactional storage engines in MySQL is not a simple row-level lock. Based on the consideration of improving concurrency performance, they generally implement multi-version concurrency control (MVCC) at the same time. Not only MySQL, but other database systems such as Oracle and PostgreSQL also implement MVCC, but their implementation mechanisms are different because there is no unified standard for MVCC.

You can think of MVCC as a variant of row-level locking, but it avoids locking operations in many cases, so the overhead is lower. Although the implementation mechanisms are different, most of them implement non-blocking read operations, and write operations only lock necessary rows.

MVCC is implemented by saving a snapshot of data at a certain point in time. In other words, no matter how long it takes to execute, the data seen by each transaction is consistent. Depending on the time when the transaction starts, the data seen by each transaction on the same table at the same time may be different.

The MVCC implementation of different storage engines is different, typically optimistic concurrency control and pessimistic concurrency control. Below we illustrate how MVCC works through a simplified version of InnoDB's behavior.

InnoDB's MVCC is implemented by saving two hidden columns behind each row of records. Of these two columns, one holds the creation time of the row, and the other holds the expiration time (or deletion time) of the row. Of course, what is stored is not the actual time value, but the system version number. Every time a new transaction is started, the system version number is automatically incremented. affairs. The system version number at the start of the transaction will be used as the version number of the transaction, which is used to compare with the version number of each row of records queried. Let's take a look at how MVCC operates specifically under the REPEATABLE READ isolation level.

SELECT

InnoDB will check each row of records based on the following two conditions:

  • InnoDB only searches for data rows whose version number is earlier than the current transaction version (That is, the system version number of the row is less than or equal to the transaction). This ensures that the rows read by the transaction either already exist before the transaction starts, or have been inserted or modified by the transaction itself.

  • The deleted version of the row is either undefined or greater than the current transaction version number. This ensures that the rows read by the transaction were not deleted before the transaction started.

Only records that meet the above two conditions can be returned as query results.

INSERT

InnoDB saves the current system version number as the row version number for each row inserted.

DELETE

InnoDB saves the current system version number as the row deletion identifier for each deleted row.

UPDATE

InnoDB inserts a new row of records, saves the current system version number as the row version number, and saves the current system version number to the original row as the row deletion identifier.

Save these two additional system version numbers so that most data reading operations can be done without locking. This design makes the data reading operation very simple, the performance is very good, and it also ensures that only rows that meet the standards are read. The disadvantages are that each row of records requires additional storage space, more checking, and some additional maintenance.

MVCC only works under two isolation levels: REPEATABLE READ and READ COMMITTED. The other two isolation levels are incompatible with MVCC because READ UNCOMMITTED always reads the latest data row, not the data row that conforms to the current transaction version. SERIALIZABLE will lock all rows read.

Note: MVCC does not have a formal specification, so the implementation of each storage engine and database system is different. No one can say that other methods are wrong.

The implementation of most MySQL transactional storage engines is not a simple row-level lock. Based on the consideration of improving concurrency performance, they generally implement multi-version concurrency control (MVCC) at the same time. Not only MySQL, but other database systems such as Oracle and PostgreSQL also implement MVCC, but their implementation mechanisms are different because there is no unified standard for MVCC.

You can think of MVCC as a variant of row-level locking, but it avoids locking operations in many cases, so the overhead is lower. Although the implementation mechanisms are different, most of them implement non-blocking read operations, and write operations only lock necessary rows.

MVCC is implemented by saving a snapshot of data at a certain point in time. In other words, no matter how long it takes to execute, the data seen by each transaction is consistent. Depending on the time when the transaction starts, the data seen by each transaction on the same table at the same time may be different.

The MVCC implementation of different storage engines is different, typically optimistic concurrency control and pessimistic concurrency control. Below we illustrate how MVCC works through a simplified version of InnoDB's behavior.

InnoDB's MVCC is implemented by saving two hidden columns behind each row of records. Of these two columns, one holds the creation time of the row, and the other holds the expiration time (or deletion time) of the row. Of course, what is stored is not the actual time value, but the system version number. Every time a new transaction is started, the system version number is automatically incremented. affairs. The system version number at the start of the transaction will be used as the version number of the transaction, which is used to compare with the version number of each row of records queried. Let's take a look at how MVCC operates specifically under the REPEATABLE READ isolation level.

SELECT

InnoDB will check each row of records based on the following two conditions:

  • InnoDB only searches for data rows whose version number is earlier than the current transaction version (That is, the system version number of the row is less than or equal to the transaction). This ensures that the rows read by the transaction either exist before the transaction starts, or are inserted or modified by the transaction itself.

  • The deleted version of the row is either undefined or greater than the current transaction version number. This ensures that the rows read by the transaction were not deleted before the transaction started.

Only records that meet the above two conditions can be returned as query results.

INSERT

InnoDB saves the current system version number as the row version number for each row inserted.

DELETE

InnoDB saves the current system version number as the row deletion identification for each deleted row.

UPDATE

InnoDB inserts a new row of records, saves the current system version number as the row version number, and saves the current system version number to the original row as the row deletion identifier.

Save these two additional system version numbers so that most data reading operations can be done without locking. This design makes the data reading operation very simple, the performance is very good, and it also ensures that only rows that meet the standards are read. The disadvantages are that each row of records requires additional storage space, more checking, and some additional maintenance.

MVCC only works under two isolation levels: REPEATABLE READ and READ COMMITTED. The other two isolation levels are incompatible with MVCC because READ UNCOMMITTED always reads the latest data row, not the data row that conforms to the current transaction version. SERIALIZABLE will lock all rows read.

Note: MVCC does not have a formal specification, so the implementation of each storage engine and database system is different. No one can say that other methods are wrong.

The above is the content of [MySQL] multi-version concurrency control. For more related content, please pay attention to the PHP Chinese website (www.php.cn)!


Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

MySQL: An Introduction to the World's Most Popular Database MySQL: An Introduction to the World's Most Popular Database Apr 12, 2025 am 12:18 AM

MySQL is an open source relational database management system, mainly used to store and retrieve data quickly and reliably. Its working principle includes client requests, query resolution, execution of queries and return results. Examples of usage include creating tables, inserting and querying data, and advanced features such as JOIN operations. Common errors involve SQL syntax, data types, and permissions, and optimization suggestions include the use of indexes, optimized queries, and partitioning of tables.

How to open phpmyadmin How to open phpmyadmin Apr 10, 2025 pm 10:51 PM

You can open phpMyAdmin through the following steps: 1. Log in to the website control panel; 2. Find and click the phpMyAdmin icon; 3. Enter MySQL credentials; 4. Click "Login".

Why Use MySQL? Benefits and Advantages Why Use MySQL? Benefits and Advantages Apr 12, 2025 am 12:17 AM

MySQL is chosen for its performance, reliability, ease of use, and community support. 1.MySQL provides efficient data storage and retrieval functions, supporting multiple data types and advanced query operations. 2. Adopt client-server architecture and multiple storage engines to support transaction and query optimization. 3. Easy to use, supports a variety of operating systems and programming languages. 4. Have strong community support and provide rich resources and solutions.

MySQL's Place: Databases and Programming MySQL's Place: Databases and Programming Apr 13, 2025 am 12:18 AM

MySQL's position in databases and programming is very important. It is an open source relational database management system that is widely used in various application scenarios. 1) MySQL provides efficient data storage, organization and retrieval functions, supporting Web, mobile and enterprise-level systems. 2) It uses a client-server architecture, supports multiple storage engines and index optimization. 3) Basic usages include creating tables and inserting data, and advanced usages involve multi-table JOINs and complex queries. 4) Frequently asked questions such as SQL syntax errors and performance issues can be debugged through the EXPLAIN command and slow query log. 5) Performance optimization methods include rational use of indexes, optimized query and use of caches. Best practices include using transactions and PreparedStatemen

How to connect to the database of apache How to connect to the database of apache Apr 13, 2025 pm 01:03 PM

Apache connects to a database requires the following steps: Install the database driver. Configure the web.xml file to create a connection pool. Create a JDBC data source and specify the connection settings. Use the JDBC API to access the database from Java code, including getting connections, creating statements, binding parameters, executing queries or updates, and processing results.

How to start mysql by docker How to start mysql by docker Apr 15, 2025 pm 12:09 PM

The process of starting MySQL in Docker consists of the following steps: Pull the MySQL image to create and start the container, set the root user password, and map the port verification connection Create the database and the user grants all permissions to the database

MySQL's Role: Databases in Web Applications MySQL's Role: Databases in Web Applications Apr 17, 2025 am 12:23 AM

The main role of MySQL in web applications is to store and manage data. 1.MySQL efficiently processes user information, product catalogs, transaction records and other data. 2. Through SQL query, developers can extract information from the database to generate dynamic content. 3.MySQL works based on the client-server model to ensure acceptable query speed.

How to install mysql in centos7 How to install mysql in centos7 Apr 14, 2025 pm 08:30 PM

The key to installing MySQL elegantly is to add the official MySQL repository. The specific steps are as follows: Download the MySQL official GPG key to prevent phishing attacks. Add MySQL repository file: rpm -Uvh https://dev.mysql.com/get/mysql80-community-release-el7-3.noarch.rpm Update yum repository cache: yum update installation MySQL: yum install mysql-server startup MySQL service: systemctl start mysqld set up booting

See all articles