Detailed explanation of JavaScript error-prone knowledge points
Preface
This article is some error-prone knowledge points that I collected and organized during the process of learning JavaScript. It will cover variable scope, type comparison, this pointer, function parameters, ClosureThe six aspects of problems and object copying and assignment are introduced and explained from the shallower to the deeper, which also involves some ES6 knowledge points.
JavaScript knowledge points
1. Variable scope
var a = 1; function test() { var a = 2; console.log(a); // 2 } test();
A is declared and assigned in the function scope above, and it is above the console, so the output follows the proximity principle a is equal to 2.
var a = 1; function test2() { console.log(a); // undefined var a = 2; } test2();
Although a is declared and assigned in the function scope above, it is located under the console, and the a variable is promoted. It has been declared but has not been assigned a value during output, so the output is undefined.
var a = 1; function test3() { console.log(a); // 1 a = 2; } test3();
A in the function scope above is reassigned, not re-declared, and is located under the console, so a in the global scope is output.
let b = 1; function test4() { console.log(b); // b is not defined let b = 2; } test4();
The ES6 let is used in the function scope above to redeclare the variable b. Unlike var, let does not have the function of variable promotion, so the output error b is not defined.
function test5() { let a = 1; { let a = 2; } console.log(a); // 1 } test5();
In the function scope above, let is used to declare a as 1, and a is declared as 2 in the block-level scope. Because the console is not in the block-level scope within the function, 1 is output. .
2. Type comparison
var arr = [], arr2 = [1]; console.log(arr === arr2); // false
Comparison of two different arrays above, console is false.
var arr = [], arr2 = []; console.log(arr === arr2); // false
Comparison of the two identical arrays above, because two separate arrays are never equal, so the console is false.
var arr = [], arr2 = {}; console.log(typeof(arr) === typeof(arr2)); // true
The above uses typeof to compare arrays and objects. Because typeof obtains NULL, the types of arrays and objects are all object, so the console is true.
var arr = []; console.log(arr instanceof Object); // true console.log(arr instanceof Array); // true
The above uses instanceof to determine whether a variable belongs to an instance of an object. Because arrays are also a type of object in JavaScript, both consoles are true.
3.this points to
var obj = { name: 'xiaoming', getName: function () { return this.name } }; console.log(obj.getName()); // 'xiaoming'
This in the object method above points to the object itself, so xiaoming is output.
var obj = { myName: 'xiaoming', getName: function () { return this.myName } }; var nameFn = obj.getName; console.log(nameFn()); // undefined
The method in the object is assigned to a variable above. At this time, this in the method will no longer point to the obj object, but to the window object, so the console is undefined.
var obj = { myName: 'xiaoming', getName: function () { return this.myName } }; var obj2 = { myName: 'xiaohua' }; var nameFn = obj.getName; console.log(nameFn.apply(obj2)); // 'xiaohua'
The method in the obj object is also assigned to the variable nameFn above, but this is pointed to the obj2 object through the apply method, so the final console is xiaohua.
4. Function parameters
function test6() { console.log(Array.prototype.slice.call(arguments)); // [1, 2] } test6(1, 2);
The above uses the arguments array object in the function to obtain the parameter array passed into the function, so the output array is [1, 2].
function test7 () { return function () { console.log(Array.prototype.slice.call(arguments)); // 未执行到此,无输出 } } test7(1, 2);
The above also uses arguments to obtain parameters, but because test7(1, 2) does not execute the function in return, there is no output. If test7(1, 2)(3, 4) is executed, [3, 4] will be output.
var args = [1, 2]; function test9() { console.log(Array.prototype.slice.call(arguments)); // [1, 2, 3, 4] } Array.prototype.push.call(args, 3, 4); test9(...args);
The above uses the Array.prototype.push.call() method to insert 3 and 4 into the args array, and uses the ES6 extension operator (...) to expand the array and pass it into test9, so the console is [ 1, 2, 3, 4].
5. Closure problem
var elem = document.getElementsByTagName('p'); // 如果页面上有5个p for(var i = 0; i < elem.length; i++) { elem[i].onclick = function () { alert(i); // 总是5 }; }
The above is a very common closure problem. The value that pops up when you click on any p is always 5, because when you trigger the click event, the value of i is already 5. It can be solved in the following way:
var elem = document.getElementsByTagName('p'); // 如果页面上有5个p for(var i = 0; i < elem.length; i++) { (function (w) { elem[w].onclick = function () { alert(w); // 依次为0,1,2,3,4 }; })(i); }
Encapsulate an immediate execution function outside the bound click event, and pass i into the function.
6. Object copying and assignment
var obj = { name: 'xiaoming', age: 23 }; var newObj = obj; newObj.name = 'xiaohua'; console.log(obj.name); // 'xiaohua' console.log(newObj.name); // 'xiaohua'
Above we assigned the obj object to the newObj object, thereby changing the name attribute of newObj, but the name attribute of the obj object was also tampered with. This is because In fact, the newObj object obtains only a memory address, not a real copy, so the obj object is tampered with.
var obj2 = { name: 'xiaoming', age: 23 }; var newObj2 = Object.assign({}, obj2, {color: 'blue'}); newObj2.name = 'xiaohua'; console.log(obj2.name); // 'xiaoming' console.log(newObj2.name); // 'xiaohua' console.log(newObj2.color); // 'blue'
Using the Object.assign() method above to perform a deep copy of the object can avoid the possibility of the source object being tampered with. Because the Object.assign() method can copy any number of the source object's own enumerable properties to the target object, and then return the target object.
var obj3 = { name: 'xiaoming', age: 23 }; var newObj3 = Object.create(obj3); newObj3.name = 'xiaohua'; console.log(obj3.name); // 'xiaoming' console.log(newObj3.name); // 'xiaohua'
We can also use the Object.create() method to copy the object. The Object.create() method can create a new object with the specified prototype object and properties.
Conclusion
Learning JavaScript is a long process and cannot be accomplished overnight. I hope that the points introduced in this article can help students learning JavaScript to have a deeper understanding and mastery of JavaScript syntax and avoid detours.
The above is the detailed explanation of JavaScript error-prone knowledge points. For more related content, please pay attention to the PHP Chinese website (www.php.cn)!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

How to use WebSocket and JavaScript to implement an online speech recognition system Introduction: With the continuous development of technology, speech recognition technology has become an important part of the field of artificial intelligence. The online speech recognition system based on WebSocket and JavaScript has the characteristics of low latency, real-time and cross-platform, and has become a widely used solution. This article will introduce how to use WebSocket and JavaScript to implement an online speech recognition system.

WebSocket and JavaScript: Key technologies for realizing real-time monitoring systems Introduction: With the rapid development of Internet technology, real-time monitoring systems have been widely used in various fields. One of the key technologies to achieve real-time monitoring is the combination of WebSocket and JavaScript. This article will introduce the application of WebSocket and JavaScript in real-time monitoring systems, give code examples, and explain their implementation principles in detail. 1. WebSocket technology

Introduction to how to use JavaScript and WebSocket to implement a real-time online ordering system: With the popularity of the Internet and the advancement of technology, more and more restaurants have begun to provide online ordering services. In order to implement a real-time online ordering system, we can use JavaScript and WebSocket technology. WebSocket is a full-duplex communication protocol based on the TCP protocol, which can realize real-time two-way communication between the client and the server. In the real-time online ordering system, when the user selects dishes and places an order

How to use WebSocket and JavaScript to implement an online reservation system. In today's digital era, more and more businesses and services need to provide online reservation functions. It is crucial to implement an efficient and real-time online reservation system. This article will introduce how to use WebSocket and JavaScript to implement an online reservation system, and provide specific code examples. 1. What is WebSocket? WebSocket is a full-duplex method on a single TCP connection.

JavaScript and WebSocket: Building an efficient real-time weather forecast system Introduction: Today, the accuracy of weather forecasts is of great significance to daily life and decision-making. As technology develops, we can provide more accurate and reliable weather forecasts by obtaining weather data in real time. In this article, we will learn how to use JavaScript and WebSocket technology to build an efficient real-time weather forecast system. This article will demonstrate the implementation process through specific code examples. We

JavaScript tutorial: How to get HTTP status code, specific code examples are required. Preface: In web development, data interaction with the server is often involved. When communicating with the server, we often need to obtain the returned HTTP status code to determine whether the operation is successful, and perform corresponding processing based on different status codes. This article will teach you how to use JavaScript to obtain HTTP status codes and provide some practical code examples. Using XMLHttpRequest

Usage: In JavaScript, the insertBefore() method is used to insert a new node in the DOM tree. This method requires two parameters: the new node to be inserted and the reference node (that is, the node where the new node will be inserted).

JavaScript is a programming language widely used in web development, while WebSocket is a network protocol used for real-time communication. Combining the powerful functions of the two, we can create an efficient real-time image processing system. This article will introduce how to implement this system using JavaScript and WebSocket, and provide specific code examples. First, we need to clarify the requirements and goals of the real-time image processing system. Suppose we have a camera device that can collect real-time image data
