


Detailed discussion on array reshaping, merging and splitting methods in Numpy
The following article will share with you a detailed discussion of array reshaping, merging and splitting methods in Numpy. It has a good reference value and I hope it will be helpful to everyone. Let’s take a look together
1. Array reshaping
##1.1 Convert a one-dimensional array into a two-dimensional array
This can be achieved through the reshape() function. Assume that data is a one-dimensional array array of type numpy.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), now convert it into a two-dimensional array with 2 rows and 5 columns. The code is as follows:data.reshape((2,5))
data.reshape((2,-1))
1.2 Convert a two-dimensional array to a one-dimensional array
The operation of converting a multi-dimensional array into a one-dimensional array is usually called flattening or raveling, so there are two functions that can for selection. The execution code is as follows:data.ravel() # 不会产生源数据的副本 data.flatten() # 总是返回数据的副本
2. Merging and splitting arrays
##2.1 Merging arraysnumpy provides many array merging methods. Here we only introduce the most commonly used one, the concatenate method. The code is as follows:
arr1 = np.array([[1,2,3], [4,5,6]]) arr2 = np.array([[7,8,9], [10,11,12]]) data = np.concatenate([arr1, arr2], axis=0) # axis参数指明合并的轴向,0表示按行,1表示按列
2.2 Array splitting
Only the split function is introduced herenp.split(data, [1], axis=0 )#data is the split array, [1] is the split row number or column number, axis indicates splitting by column or row (the default is 0, that is, splitting by row)
Related recommendations :
Example of unified assignment of array elements in numpyA brief discussion of several sorting methods of numpy arrays_pythonThe above is the detailed content of Detailed discussion on array reshaping, merging and splitting methods in Numpy. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

How to update the numpy version: 1. Use the "pip install --upgrade numpy" command; 2. If you are using the Python 3.x version, use the "pip3 install --upgrade numpy" command, which will download and install it, overwriting the current NumPy Version; 3. If you are using conda to manage the Python environment, use the "conda install --update numpy" command to update.

Numpy is an important mathematics library in Python. It provides efficient array operations and scientific calculation functions and is widely used in data analysis, machine learning, deep learning and other fields. When using numpy, we often need to check the version number of numpy to determine the functions supported by the current environment. This article will introduce how to quickly check the numpy version and provide specific code examples. Method 1: Use the __version__ attribute that comes with numpy. The numpy module comes with a __

It is recommended to use the latest version of NumPy1.21.2. The reason is: Currently, the latest stable version of NumPy is 1.21.2. Generally, it is recommended to use the latest version of NumPy, as it contains the latest features and performance optimizations, and fixes some issues and bugs in previous versions.

Teach you step by step to install NumPy in PyCharm and make full use of its powerful functions. Preface: NumPy is one of the basic libraries for scientific computing in Python. It provides high-performance multi-dimensional array objects and various functions required to perform basic operations on arrays. function. It is an important part of most data science and machine learning projects. This article will introduce you to how to install NumPy in PyCharm, and demonstrate its powerful features through specific code examples. Step 1: Install PyCharm First, we

How to upgrade numpy version: Easy-to-follow tutorial, requires concrete code examples Introduction: NumPy is an important Python library used for scientific computing. It provides a powerful multidimensional array object and a series of related functions that can be used to perform efficient numerical operations. As new versions are released, newer features and bug fixes are constantly available to us. This article will describe how to upgrade your installed NumPy library to get the latest features and resolve known issues. Step 1: Check the current NumPy version at the beginning

How to add dimensions in numpy: 1. Use "np.newaxis" to add dimensions. "np.newaxis" is a special index value used to insert a new dimension at a specified position. You can use np.newaxis at the corresponding position. To increase the dimension; 2. Use "np.expand_dims()" to increase the dimension. The "np.expand_dims()" function can insert a new dimension at the specified position to increase the dimension of the array.

Numpy can be installed using pip, conda, source code and Anaconda. Detailed introduction: 1. pip, enter pip install numpy in the command line; 2. conda, enter conda install numpy in the command line; 3. Source code, unzip the source code package or enter the source code directory, enter in the command line python setup.py build python setup.py install.

With the rapid development of fields such as data science, machine learning, and deep learning, Python has become a mainstream language for data analysis and modeling. In Python, NumPy (short for NumericalPython) is a very important library because it provides a set of efficient multi-dimensional array objects and is the basis for many other libraries such as pandas, SciPy and scikit-learn. In the process of using NumPy, you are likely to encounter compatibility issues between different versions, then
