


A direct look at the principles of PHP serialization and deserialization
0. Preface
The serialization and deserialization functions of objects will not be described in detail. Serialization in php The result is a PHP-customized string format, somewhat similar to json.
We need to solve several problems when designing the serialization and deserialization of objects in any language
After an object is serialized, the serialization result has a self-describing function (knowing the specific type of the object from the serialization result,
knowing the type is not enough, of course you also need to know the type The corresponding specific value).
Permission control during serialization, you can customize the serialization fields, etc., for example, it is very convenient to do it in golang.
Time performance issues: In some performance-sensitive scenarios, object serialization cannot hold back, such as: high-performance services (I often use protobuf for serialization).
Space performance issues: Serialization The subsequent result cannot be too long. For example, if an int object is in memory and the data length becomes 10 times the length of int after serialization, then there is a problem with the serialization algorithm.
This article only starts from Explain the process of serialization and deserialization in PHP from the perspective of PHP code. Remember that serialization and deserialization only operate on object data. This should be easy to understand for anyone with experience in object-oriented development.
Related learning recommendations: PHP programming from entry to proficiency
1. Serialize and deserialize methods unserialize
php natively provides object serialization function, unlike c...^_^. It is also very simple to use, just two interfaces.
class fobnn { public $hack_id; private $hack_name; public function __construct($name,$id) { $this->hack_name = $name; $this->hack_id = $id; } public function print() { echo $this->hack_name.PHP_EOL; } } $obj = new fobnn('fobnn',1); $obj->print(); $serializedstr = serialize($obj); //通过serialize接口序列化 echo $serializedstr.PHP_EOL;; $toobj = unserialize($serializedstr);//通过unserialize反序列化 $toobj->print();
fobnn O:5:"fobnn":2:{s:7:"hack_id";i:1;s:16:"fobnnhack_name";s:5:"fobnn";} fobnn
See the output of the second line , this string is the result of serialization. This structure is actually easy to understand. It can be found that it is mapped through object name/member name. Of course, the tag names after serialization of members with different access rights are slightly different.
Based on the three questions I mentioned above, we can take a look
1. Self-describing function
O:5:"fobnn":2 where o represents Object type, and the type name is fobnn. In this format, the following 2 indicates that there are two member objects.
Regarding the member objects, it is actually the same set of sub-descriptions. This is a recursive definition.
The self-describing function is mainly implemented by recording the names of objects and members through strings.
2. Performance issues
The time performance of PHP serialization will not be analyzed in this article. See below for details, but the serialization result is actually similar to the protocol defined by json/bson. There is a protocol header. The protocol header describes the type, and the protocol body describes the value corresponding to the type. The serialization result will not be compressed.
2. Magic method in deserialization
corresponds to the second problem mentioned above. In fact, there is also a solution in PHP, one is through the magic method , the second is a custom serialization function. Let’s first introduce the magic methods __sleep and __wakeup
class fobnn { public $hack_id; private $hack_name; public function __construct($name,$id) { $this->hack_name = $name; $this->hack_id = $id; } public function print() { echo $this->hack_name.PHP_EOL; } public function __sleep() { return array("hack_name"); } public function __wakeup() { $this->hack_name = 'haha'; } } $obj = new fobnn('fobnn',1); $obj->print(); $serializedstr = serialize($obj); echo $serializedstr.PHP_EOL;; $toobj = unserialize($serializedstr); $toobj->print();
fobnn O:5:"fobnn":1:{s:16:"fobnnhack_name";s:5:"fobnn";} haha
before serialization, __sleep will be called first and return an array of member names that need to be serialized. , through this we can control the data that needs to be serialized. In the case, I only returned hack_name
. You can see that only the hack_name member is serialized in the result.
After the serialization is completed , will jump to __wakeup
Here we can do some follow-up work, such as reconnecting to the database.
3. Customize the Serializable interface
interface Serializable { abstract public string serialize ( void ) abstract public void unserialize ( string $serialized ) }
Through this interface we can customize the behavior of serialization and deserialization. This function can mainly be used to customize our serialization format.
class fobnn implements Serializable { public $hack_id; private $hack_name; public function __construct($name,$id) { $this->hack_name = $name; $this->hack_id = $id; } public function print() { echo $this->hack_name.PHP_EOL; } public function __sleep() { return array('hack_name'); } public function __wakeup() { $this->hack_name = 'haha'; } public function serialize() { return json_encode(array('id' => $this->hack_id ,'name'=>$this->hack_name )); } public function unserialize($var) { $array = json_decode($var,true); $this->hack_name = $array['name']; $this->hack_id = $array['id']; } } $obj = new fobnn('fobnn',1); $obj->print(); $serializedstr = serialize($obj); echo $serializedstr.PHP_EOL;; $toobj = unserialize($serializedstr); $toobj->print();
fobnn C:5:"fobnn":23:{{"id":1,"name":"fobnn"}} fobnn
After using the custom serialization interface, we The magic method is useless.
4.PHP dynamic type and PHP deserialization
Since the self-describing function mentioned above, then The type of object is saved in the serialization result, and php is a dynamically typed language, so we can do a simple experiment.
class fobnn { public $hack_id; public $hack_name; public function __construct($name,$id) { $this->hack_name = $name; $this->hack_id = $id; } public function print() { var_dump($this->hack_name); } } $obj = new fobnn('fobnn',1); $obj->print(); $serializedstr = serialize($obj); echo $serializedstr.PHP_EOL;; $toobj = unserialize($serializedstr); $toobj->print(); $toobj2 = unserialize("O:5:\"fobnn\":2:{s:7:\"hack_id\";i:1;s:9:\"hack_name\";i:12345;}"); $toobj2->print();
We modify hack_name
The deserialization result is int type, i:12345
string(5) "fobnn" O:5:"fobnn":2:{s:7:"hack_id";i:1;s:9:"hack_name";s:5:"fobnn";} string(5) "fobnn" int(12345)
It can be found that the object was successfully serialized back! And it can work normally!. Of course, this mechanism of PHP provides flexible and changeable syntax, but Security risks are also introduced. We will continue to analyze the security issues caused by PHP serialization and deserialization features.
The above is the detailed content of A direct look at the principles of PHP serialization and deserialization. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python each have their own advantages, and choose according to project requirements. 1.PHP is suitable for web development, especially for rapid development and maintenance of websites. 2. Python is suitable for data science, machine learning and artificial intelligence, with concise syntax and suitable for beginners.

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

PHP is widely used in e-commerce, content management systems and API development. 1) E-commerce: used for shopping cart function and payment processing. 2) Content management system: used for dynamic content generation and user management. 3) API development: used for RESTful API development and API security. Through performance optimization and best practices, the efficiency and maintainability of PHP applications are improved.

PHP is still dynamic and still occupies an important position in the field of modern programming. 1) PHP's simplicity and powerful community support make it widely used in web development; 2) Its flexibility and stability make it outstanding in handling web forms, database operations and file processing; 3) PHP is constantly evolving and optimizing, suitable for beginners and experienced developers.

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.
