03.Java Basics - Polymorphism
Basic concept
Polymorphism is the ability of the same behavior to have multiple different manifestations or forms.
Polymorphism is the embodiment of multiple expressions of objects.
Conditions for polymorphism: Inheritance, rewriting, upward transformation
Dynamic binding is the specific form of polymorphism implementation.
Example study
The following is an example to verify the above concept.
// 车class Car { public void show(){ System.out.println("This is a car"); } }//丰田class Toyota extends Car{ public void show(){ System.out.println("This is a Japan car"); } }//别克class Buick extends Car{ public void show(){ System.out.println("This is a USA car"); } }public class Test{ public static void main(String[] args) { Car c1 = new Toyota(); Car c2 = new Buick(); c1.show(); c2.show(); // 打印内容: // This is a Japan car // This is a USA car } }
Observing the code, different contents are printed when calling the show method of Car, which reflects the polymorphism of the class. At the same time, the example also meets the three basic conditions for polymorphism to occur:
Inheritance: Toyota and Buick inherit from Car
Rewrite: Toyota and Buick rewrite the show method of Car
Upward transformation: Upward transformation occurs when creating Toyota and Buick objects Transformation
Let’s look at a typical question:
class A { public String show(A obj) { return ("A and A"); } public String show(D obj) { return ("A and D"); } } class B extends A { public String show(A obj) { return ("B and A"); } public String show(B obj) { return ("B and B"); } } class C extends B { } class D extends B { }public class Test { public static void main(String[] args) { A a1 = new A(); A a2 = new B(); B b = new B(); C c = new C(); D d = new D(); // 1.因此 B 是 A 的子类,调用类 A 的 show(A obj) 方法,输出:A and A System.out.println(a1.show(b)); // 2.因为 C 是 A 的子类,调用类 A 的 show(A obj) 方法,输出:A and A System.out.println(a1.show(c)); // 3.调用类 A 的 show(D obj) 方法,输出:A and D System.out.println(a1.show(d)); // 4.因为 B 向上转型成 A, 且 B 是 A 的子类,调用类 A 的 show(A obj) 方法 // 但是由于 B 中重写了 show(A obj) 方法,导致运行期间发生的动态绑定,调用 类 B 的 show(A obj) 方法 // ,输出:B and A System.out.println(a2.show(b)); // 5.同上 System.out.println(a2.show(c)); // 6.B 向上转型成 A,默认调用类 A 的 show(D obj) 方法,输出:A and D System.out.println(a2.show(d)); // 7.调用类 B 的 show(B obj) 方法,输出:B and B System.out.println(b.show(b)); // 8.C 是 B 的子类,调用类 B 的 show(B obj) 方法,输出:B and B System.out.println(b.show(c)); // 9.调用继承自类 A 的 show(D obj) 方法,输出:A and D System.out.println(b.show(d)); } }
Constructor and Polymorphism
Similarly, explore through an example
class Parent { void print() { System.out.println("I am a Parent"); } Parent() { print(); } } class Son extends Parent { int num = 1; // 重写(override)了父类方法 void print() { System.out.println("I am a Son " + num); } Son() { print(); } }public class Test { public static void main(String[] args) { Son son = new Son(); /** * 输出内容: * I am a Son 0 * I am a Son 1 */ } }
We can see from the output content that the Parent's constructor called Son's print() due to dynamic binding. Since num has not been initialized, the value is 0.
Basic concept
Polymorphism is the ability of the same behavior to have multiple different manifestations or forms.
Polymorphism is the embodiment of multiple expressions of objects.
Conditions for polymorphism: Inheritance, rewriting, upward transformation
Dynamic binding is the specific form of polymorphism implementation.
Example study
The following is an example to verify the above concept.
// 车class Car { public void show(){ System.out.println("This is a car"); } }//丰田class Toyota extends Car{ public void show(){ System.out.println("This is a Japan car"); } }//别克class Buick extends Car{ public void show(){ System.out.println("This is a USA car"); } }public class Test{ public static void main(String[] args) { Car c1 = new Toyota(); Car c2 = new Buick(); c1.show(); c2.show(); // 打印内容: // This is a Japan car // This is a USA car } }
Observing the code, different contents are printed when calling the show method of Car, which reflects the polymorphism of the class. At the same time, the example also meets the three basic conditions for polymorphism to occur:
Inheritance: Toyota and Buick inherit from Car
Rewrite: Toyota and Buick rewrite the show method of Car
Upward transformation: Upward transformation occurs when creating Toyota and Buick objects Transformation
Let’s look at a typical question:
class A { public String show(A obj) { return ("A and A"); } public String show(D obj) { return ("A and D"); } } class B extends A { public String show(A obj) { return ("B and A"); } public String show(B obj) { return ("B and B"); } } class C extends B { } class D extends B { }public class Test { public static void main(String[] args) { A a1 = new A(); A a2 = new B(); B b = new B(); C c = new C(); D d = new D(); // 1.因此 B 是 A 的子类,调用类 A 的 show(A obj) 方法,输出:A and A System.out.println(a1.show(b)); // 2.因为 C 是 A 的子类,调用类 A 的 show(A obj) 方法,输出:A and A System.out.println(a1.show(c)); // 3.调用类 A 的 show(D obj) 方法,输出:A and D System.out.println(a1.show(d)); // 4.因为 B 向上转型成 A,应该是调用类 A 的 show(A obj) 方法 // 由于 B 中重写了 show(A obj) 方法,实际调用 类 B 的方法,,输出:B and A System.out.println(a2.show(b)); // 5.同上 System.out.println(a2.show(c)); // 6.B 向上转型成 A,默认调用类 A 的 show(D obj) 方法,输出:A and D System.out.println(a2.show(d)); // 7.调用类 B 的 show(B obj) 方法,输出:B and B System.out.println(b.show(b)); // 8.C 是 B 的子类,调用类 B 的 show(B obj) 方法,输出:B and B System.out.println(b.show(c)); // 9.调用继承自类 A 的 show(D obj) 方法,输出:A and D System.out.println(b.show(d)); } }
Constructor and Polymorphism
Similarly, we will explore the
class Parent { void print() { System.out.println("I am a Parent"); } Parent() { print(); } } class Son extends Parent { int num = 1; // 关键 -> 重写了父类的方法 void print() { System.out.println("I am a Son " + num); } Son() { print(); } }public class Test { public static void main(String[] args) { Son son = new Son(); // 输出内容: // I am a Son 0 // I am a Son 1 } }
analysis results through an example. In fact, it involves three contents:
Son In the process of instantiation, the constructor of Parent, Parent's constructor is executed first.
Son overrides the print method, so Parent calls the rewritten method of Son.
In Parent, since num has not been initialized, the value is 0.
Basic concept
Polymorphism is the ability of the same behavior to have multiple different manifestations or forms.
Polymorphism is the embodiment of multiple expressions of objects.
Conditions for polymorphism: Inheritance, rewriting, upward transformation
Dynamic binding is the specific form of polymorphism implementation.
Example study
The following is an example to verify the above concept.
// 车class Car { public void show(){ System.out.println("This is a car"); } }//丰田class Toyota extends Car{ public void show(){ System.out.println("This is a Japan car"); } }//别克class Buick extends Car{ public void show(){ System.out.println("This is a USA car"); } }public class Test{ public static void main(String[] args) { Car c1 = new Toyota(); Car c2 = new Buick(); c1.show(); c2.show(); // 打印内容: // This is a Japan car // This is a USA car } }
Observing the code, different contents are printed when calling the show method of Car, which reflects the polymorphism of the class. At the same time, the example also meets the three basic conditions for polymorphism to occur:
Inheritance: Toyota and Buick inherit from Car
Rewrite: Toyota and Buick rewrite the show method of Car
Upward transformation: Upward transformation occurs when creating Toyota and Buick objects Transformation
Let’s look at a typical question:
class A { public String show(A obj) { return ("A and A"); } public String show(D obj) { return ("A and D"); } } class B extends A { public String show(A obj) { return ("B and A"); } public String show(B obj) { return ("B and B"); } } class C extends B { } class D extends B { }public class Test { public static void main(String[] args) { A a1 = new A(); A a2 = new B(); B b = new B(); C c = new C(); D d = new D(); // 1.因此 B 是 A 的子类,调用类 A 的 show(A obj) 方法,输出:A and A System.out.println(a1.show(b)); // 2.因为 C 是 A 的子类,调用类 A 的 show(A obj) 方法,输出:A and A System.out.println(a1.show(c)); // 3.调用类 A 的 show(D obj) 方法,输出:A and D System.out.println(a1.show(d)); // 4.因为 B 向上转型成 A, 且 B 是 A 的子类,调用类 A 的 show(A obj) 方法 // 但是由于 B 中重写了 show(A obj) 方法,导致运行期间发生的动态绑定,调用 类 B 的 show(A obj) 方法 // ,输出:B and A System.out.println(a2.show(b)); // 5.同上 System.out.println(a2.show(c)); // 6.B 向上转型成 A,默认调用类 A 的 show(D obj) 方法,输出:A and D System.out.println(a2.show(d)); // 7.调用类 B 的 show(B obj) 方法,输出:B and B System.out.println(b.show(b)); // 8.C 是 B 的子类,调用类 B 的 show(B obj) 方法,输出:B and B System.out.println(b.show(c)); // 9.调用继承自类 A 的 show(D obj) 方法,输出:A and D System.out.println(b.show(d)); } }
Constructor and Polymorphism
Similarly, explore through an example
class Parent { void print() { System.out.println("I am a Parent"); } Parent() { print(); } } class Son extends Parent { int num = 1; // 重写(override)了父类方法 void print() { System.out.println("I am a Son " + num); } Son() { print(); } }public class Test { public static void main(String[] args) { Son son = new Son(); /** * 输出内容: * I am a Son 0 * I am a Son 1 */ } }
We can see from the output content that the Parent's constructor called Son's print() due to dynamic binding. Since num has not been initialized, the value is 0.
Analysis results, in fact, it involves three contents:
During the instantiation process of Son, the constructor of Parent and the constructor of Parent are executed first.
Son overrides the print method, so Parent calls the rewritten method of Son.
In Parent, since num has not been initialized, the value is 0.
The above is 03.Java basics - polymorphic content. For more related content, please pay attention to the PHP Chinese website (www.php.cn)!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

In this article, we have kept the most asked Java Spring Interview Questions with their detailed answers. So that you can crack the interview.

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

Java is a popular programming language that can be learned by both beginners and experienced developers. This tutorial starts with basic concepts and progresses through advanced topics. After installing the Java Development Kit, you can practice programming by creating a simple "Hello, World!" program. After you understand the code, use the command prompt to compile and run the program, and "Hello, World!" will be output on the console. Learning Java starts your programming journey, and as your mastery deepens, you can create more complex applications.
