atleast_in PyTorch
コーヒー買ってきて☕
*メモ:
- 私の投稿では atleast_2d() について説明しています。
- 私の投稿では atleast_3d() について説明しています。
atleast_1d() は、1 つ以上の 0D テンソルを 1 つ以上の 0D テンソルから 1 つ以上の 1D テンソルに変更するだけで、0 個以上の要素の 1 つ以上の 1D または複数の D テンソルのビューを取得できます。以下に示すように、0 個以上の要素:
*メモ:
- atleast_1d() はトーチでは使用できますが、テンソルでは使用できません。
- torch の 1 つ目以上の引数は *tensors(Required-Type: int、float、complex、bool のテンソル、タプル、または int、float、complex、bool のテンソルのリスト) です。
*メモ:
- 複数のテンソルを設定する場合は、テンソルのタプルが返され、それ以外の場合はテンソルが返されます。
- *tensors=、tensor、input などのキーワードは使用しないでください。
- 引数を設定しないと空のタプルが返されます。
import torch tensor0 = torch.tensor(2) # 0D tensor torch.atleast_1d(tensor0) # tensor([2]) tensor0 = torch.tensor(2) # 0D tensor tensor1 = torch.tensor([2, 7, 4]) # 1D tensor tensor2 = torch.tensor([[2, 7, 4], [8, 3, 2]]) # 2D tensor tensor3 = torch.tensor([[[2, 7, 4], [8, 3, 2]], # 3D tensor [[5, 0, 8], [3, 6, 1]]]) tensor4 = torch.tensor([[[[2, 7, 4], [8, 3, 2]], # 4D tensor [[5, 0, 8], [3, 6, 1]]], [[[9, 4, 7], [1, 0, 5]], [[6, 7, 4], [2, 1, 9]]]]) torch.atleast_1d(tensor0, tensor1, tensor2, tensor3, tensor4) torch.atleast_1d((tensor0, tensor1, tensor2, tensor3, tensor4)) # (tensor([2]), # tensor([2, 7, 4]), # tensor([[2, 7, 4], [8, 3, 2]]), # tensor([[[2, 7, 4], [8, 3, 2]], # [[5, 0, 8], [3, 6, 1]]]), # tensor([[[[2, 7, 4], [8, 3, 2]], # [[5, 0, 8], [3, 6, 1]]], # [[[9, 4, 7], [1, 0, 5]], # [[6, 7, 4], [2, 1, 9]]]])) tensor0 = torch.tensor(2) # 0D tensor tensor1 = torch.tensor([2, 7, 4]) # 1D tensor tensor2 = torch.tensor([[2., 7., 4.], # 2D tensor [8., 3., 2.]]) tensor3 = torch.tensor([[[2.+0.j, 7.+0.j, 4.+0.j], # 3D tensor [8.+0.j, 3.+0.j, 2.+0.j]], [[5.+0.j, 0.+0.j, 8.+0.j], [3.+0.j, 6.+0.j, 1.+0.j]]]) tensor4 = torch.tensor([[[[True, False, True], [False, True, False]], [[True, False, True], [False, True, False]]], [[[True, False, True], [False, True, False]], [[True, False, True], [False, True, False]]]]) # 4D tensor torch.atleast_1d(tensor0, tensor1, tensor2, tensor3, tensor4) # (tensor([2]), # tensor([2, 7, 4]), # tensor([[2., 7., 4.], # [8., 3., 2.]]), # tensor([[[2.+0.j, 7.+0.j, 4.+0.j], # [8.+0.j, 3.+0.j, 2.+0.j]], # [[5.+0.j, 0.+0.j, 8.+0.j], # [3.+0.j, 6.+0.j, 1.+0.j]]]), # tensor([[[[True, False, True], [False, True, False]], # [[True, False, True], [False, True, False]]], # [[[True, False, True], [False, True, False]], # [[True, False, True], [False, True, False]]]])) torch.atleast_1d() # ()
以上がatleast_in PyTorchの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

Pythonasyncioについて...

Investing.comの反クラウリング戦略を理解する多くの人々は、Investing.com(https://cn.investing.com/news/latest-news)からのニュースデータをクロールしようとします。

Python 3.6のピクルスファイルの読み込みエラー:modulenotfounderror:nomodulenamed ...

SCAPYクローラーを使用するときにパイプラインファイルを作成できない理由についての議論は、SCAPYクローラーを学習して永続的なデータストレージに使用するときに、パイプラインファイルに遭遇する可能性があります...
