Python中unittest模块做UT(单元测试)使用实例
待测试的类(Widget.py)
# Widget.py # Python 2.7.6 class Widget: def __init__(self, size = (40,40)): self.size = size def getSize(self): return self.size def reSize(self,width,height): if width <0 or height < 0: raise ValueError, 'illegal size' else: self.size = (width,height) return self.size def dispose(self): pass
测试类(Auto.py)
# coding=utf8 # Auto.dy # Python 2.7.6 from Widget import Widget #导入测试类模块Widget import unittest #导入unittest模块 class WidgetTestCase(unittest.TestCase): #让所有执行测试的类都继承于TestCase类,可以将TestCase看成是对特定类进行测试的方法的集合 #在setUp()方法中进行测试前的初始化工作。 def setUp(self): self.widget = Widget() #并在tearDown()方法中执行测试后的清除工作,setUp()和tearDown()都是TestCase类中定义的方法。 def tearDown(self): self.widget = None #测试Widget类中getSize方法 def testgetSize(self): print "Test GetSize" #对Widget类中getSize()方法的返回值和预期值进行比较,确保两者是相等的, #assertEqual()也是TestCase类中定义的方法。 self.assertEqual(self.widget.getSize(), (40, 40)) #测试Widget类中reSize方法 def testreSize(self): print "Test Resize" #对Widget类中reSize()方法的返回值和预期值进行比较,确保两者是相等的。 #assertEqual()也是TestCase类中定义的方法。 self.assertEqual(self.widget.reSize(50,100),(50,100)) #提供名为suite()的全局方法,PyUnit在执行测试的过程调用suit()方法来确定有多少个测试用例需要被执行, #可以将TestSuite看成是包含所有测试用例的一个容器。 def suite(): suite = unittest.TestSuite() suite.addTest(WidgetTestCase("testgetSize"))#往此添加需要测试的方法testgetSize() suite.addTest(WidgetTestCase("testreSize")) #往此添加需要测试的方法testreSize() return suite if __name__ == "__main__": unittest.main(defaultTest = 'suite') #在主函数中调用全局方法.
测试结果:
D:\Python>python27 Auto.py Test GetSize .Test Resize . ------------------------------ Ran 2 tests in 0.004s OK
总结:
1。第一步:先写好测试类
2。第二步:导入unittest模块及测试的类,运用setup()方法做测试前的准备工作,如建立数据库连接,运用teardown()方法做测试后的清除工作,如取消数据库的链接,再对类中的方法逐一做测试。
3。第三步: 写suite()的全局方法,将要测试的方法,一一加入。
测试结果,有几个测试用例就有几个. 最后显示OK,表示通过。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".
