Home Database SQL begin end usage in sql

begin end usage in sql

May 02, 2024 am 04:57 AM
concurrent access

In SQL, BEGIN and END are used as transaction boundary markers to ensure the atomicity, durability, and isolation of operations. BEGIN starts a transaction and END commits or rolls back the transaction. 1. BEGIN starts a transaction. 2. Perform an operation (insert, update, etc.). 3. COMMIT commits the transaction and makes the changes permanent. 4. ROLLBACK rolls back the transaction and undoes the changes.

begin end usage in sql

Usage of BEGIN and END in SQL

In SQL, BEGIN and END are used as transaction boundary markers . A transaction is a series of atomic operations that either all succeed or all fail. BEGIN and END are used to group these operations together to ensure atomicity.

Usage

The BEGIN statement starts a transaction, and the END statement commits or rolls back the transaction:

BEGIN;  -- 开始事务

-- 执行操作...

COMMIT;  -- 提交事务(使更改永久化)

-- 或者

ROLLBACK;  -- 回滚事务(撤消更改)
Copy after login

Atomicity

The atomicity of a transaction means that either all operations succeed or all operations fail. If an error occurs during a transaction, the ROLLBACK statement undoes all operations that have been performed, restoring the database to the state it was in when the transaction began.

Persistence

The COMMIT statement makes changes within a transaction permanent. Once the COMMIT statement is executed, these changes are persisted in the database, even if a failure occurs or the application is shut down.

Isolation

Transactions also provide isolation, which means that changes in one transaction are not visible to other transactions until the COMMIT statement is executed. This helps prevent concurrent access from causing data inconsistency.

Example

The following example shows the use of BEGIN and END in SQL:

BEGIN;

INSERT INTO customers (name, email) VALUES ('John Doe', 'john.doe@example.com');

UPDATE customers SET email = 'john.doe@new-example.com' WHERE id = 1;

COMMIT;
Copy after login

In this example, the BEGIN statement starts a transaction, and then Performs two operations: inserting a new customer and updating an existing customer's email. The COMMIT statement commits the transaction, making the changes permanent. If an error occurs during an insert or update, the ROLLBACK statement rolls back both operations.

The above is the detailed content of begin end usage in sql. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to ensure thread safety of volatile variables in Java functions? How to ensure thread safety of volatile variables in Java functions? May 04, 2024 am 10:15 AM

Methods for ensuring thread safety of volatile variables in Java: Visibility: Ensure that modifications to volatile variables by one thread are immediately visible to other threads. Atomicity: Ensure that certain operations on volatile variables (such as writing, reading, and comparison exchanges) are indivisible and will not be interrupted by other threads.

What pitfalls should we pay attention to when designing distributed systems with Golang technology? What pitfalls should we pay attention to when designing distributed systems with Golang technology? May 07, 2024 pm 12:39 PM

Pitfalls in Go Language When Designing Distributed Systems Go is a popular language used for developing distributed systems. However, there are some pitfalls to be aware of when using Go, which can undermine the robustness, performance, and correctness of your system. This article will explore some common pitfalls and provide practical examples on how to avoid them. 1. Overuse of concurrency Go is a concurrency language that encourages developers to use goroutines to increase parallelism. However, excessive use of concurrency can lead to system instability because too many goroutines compete for resources and cause context switching overhead. Practical case: Excessive use of concurrency leads to service response delays and resource competition, which manifests as high CPU utilization and high garbage collection overhead.

Locking and synchronization mechanism of C++ functions in concurrent programming? Locking and synchronization mechanism of C++ functions in concurrent programming? Apr 27, 2024 am 11:21 AM

Function locks and synchronization mechanisms in C++ concurrent programming are used to manage concurrent access to data in a multi-threaded environment and prevent data competition. The main mechanisms include: Mutex (Mutex): a low-level synchronization primitive that ensures that only one thread accesses the critical section at a time. Condition variable (ConditionVariable): allows threads to wait for conditions to be met and provides inter-thread communication. Atomic operation: Single instruction operation, ensuring single-threaded update of variables or data to prevent conflicts.

How to solve the problem of busy servers for deepseek How to solve the problem of busy servers for deepseek Mar 12, 2025 pm 01:39 PM

DeepSeek: How to deal with the popular AI that is congested with servers? As a hot AI in 2025, DeepSeek is free and open source and has a performance comparable to the official version of OpenAIo1, which shows its popularity. However, high concurrency also brings the problem of server busyness. This article will analyze the reasons and provide coping strategies. DeepSeek web version entrance: https://www.deepseek.com/DeepSeek server busy reason: High concurrent access: DeepSeek's free and powerful features attract a large number of users to use at the same time, resulting in excessive server load. Cyber ​​Attack: It is reported that DeepSeek has an impact on the US financial industry.

How to use atomic classes in Java function concurrency and multi-threading? How to use atomic classes in Java function concurrency and multi-threading? Apr 28, 2024 pm 04:12 PM

Atomic classes are thread-safe classes in Java that provide uninterruptible operations and are crucial for ensuring data integrity in concurrent environments. Java provides the following atomic classes: AtomicIntegerAtomicLongAtomicReferenceAtomicBoolean These classes provide methods for getting, setting, and comparing values ​​to ensure that the operation is atomic and will not be interrupted by threads. Atomic classes are useful when working with shared data and preventing data corruption, such as maintaining concurrent access to a shared counter.

A guide to unit testing Go concurrent functions A guide to unit testing Go concurrent functions May 03, 2024 am 10:54 AM

Unit testing concurrent functions is critical as this helps ensure their correct behavior in a concurrent environment. Fundamental principles such as mutual exclusion, synchronization, and isolation must be considered when testing concurrent functions. Concurrent functions can be unit tested by simulating, testing race conditions, and verifying results.

Lock granularity optimization skills for golang function concurrent cache Lock granularity optimization skills for golang function concurrent cache May 05, 2024 am 08:45 AM

Lock granularity tips for optimizing Go concurrent cache performance: Global lock: Simple implementation, if the lock granularity is too large, unnecessary competition will occur. Key-level locking: The lock granularity is refined to each key, but it will introduce a large number of locks and increase overhead. Shard lock: Divide the cache into multiple shards, each shard has a separate lock, to achieve a balance between concurrency and lock contention.

How to return pointer in golang? How to return pointer in golang? Apr 23, 2024 pm 02:09 PM

Returning pointers in Go allows direct access to raw data. The syntax for returning a pointer is to use an asterisk prefixed type, for example: funcgetPointer()int{varxint=10;return&x}. Pointers can be used to dynamically allocate data, using the new function and dereferencing the pointer to set the value. Return pointers should pay attention to concurrency safety, aliasing and applicability.

See all articles