What are the commonly used concurrency tools in Java function libraries?
The Java concurrency library provides a variety of tools, including: Thread pool: used to manage threads and improve efficiency. Lock: used to synchronize access to shared resources. Barrier: Used to wait for all threads to reach a specified point. Atomic operations: indivisible units, ensuring thread safety. Concurrent queue: A thread-safe queue that allows multiple threads to operate simultaneously.
Commonly used concurrency tools in Java function libraries
The rich concurrency libraries in Java provide a variety of tools that can help you write robust, high-performance Performance of concurrent applications. This article will introduce some of the most commonly used concurrency tools in Java function libraries and demonstrate their usage based on actual cases.
1. Thread pool
Thread pool is a mechanism for managing threads, which can improve efficiency and reduce the overhead of creating and destroying threads. The ThreadPoolExecutor
class in Java allows you to configure various thread pool properties such as number of threads, maximum queue size, and denial policy.
Practical case:
// 创建一个具有 5 个线程的线程池 ThreadPoolExecutor threadPool = new ThreadPoolExecutor(5, 5, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>()); // 提交任务到线程池 threadPool.execute(() -> System.out.println("任务 1 执行中")); threadPool.execute(() -> System.out.println("任务 2 执行中")); // 关闭线程池 threadPool.shutdown();
2. Lock
Lock is a synchronization mechanism that allows you to control access to shared resources. The concurrency library in Java provides various lock implementations, including:
ReentrantLock
: A reentrant lock that allows the same thread to acquire the same lock multiple timesReadWriteLock
: A read-write lock that allows multiple threads to read shared resources at the same time, but only allows one thread to write
Practical case:
// 创建一个 ReentrantLock 对象 ReentrantLock lock = new ReentrantLock(); // 试图获取锁 if (lock.tryLock()) { try { // 对共享资源执行操作 } finally { lock.unlock(); // 释放锁 } }
3. Barrier
A barrier is a synchronization mechanism that allows a group of threads to wait for all threads to reach a certain point. The CyclicBarrier
class in Java allows you to specify the number of waiting threads and when all threads reach the barrier, they are released.
Practical case:
// 创建一个 CyclicBarrier 对象,等待 3 个线程 CyclicBarrier barrier = new CyclicBarrier(3); // 创建线程,每个线程等待屏障释放 for (int i = 0; i < 3; i++) { new Thread(() -> { try { barrier.await(); // 所有线程都到达屏障后执行操作 } catch (BrokenBarrierException | InterruptedException e) { e.printStackTrace(); } }).start(); }
4. Atomic operations
Atomic operations are indivisible units and cannot be interrupted by other threads. The Atomic
class in Java provides a set of atomic variables and operations, such as:
AtomicInteger
: an atomic int variableAtomicReference
: An atomic reference variableAtomicBoolean
: An atomic Boolean variable
Actual case:
// 创建一个 AtomicInteger 对象 AtomicInteger counter = new AtomicInteger(0); // 使用原子操作增加计数器 counter.incrementAndGet();
5. Concurrent queue
Concurrent queue is a thread-safe queue implementation that allows multiple threads to operate the queue at the same time. The concurrency library in Java provides various concurrent queues, such as:
BlockingQueue
: a blocking queue that blocks the acquisition operation when the queue is empty-
ConcurrentLinkedQueue
: A non-blocking queue, implemented using a linked list
Practical case:
// 创建一个 LinkedBlockingQueue 对象 BlockingQueue<Integer> queue = new LinkedBlockingQueue<>(); // 向队列添加元素 queue.offer(1); queue.offer(2); // 从队列获取元素 Integer element = queue.poll();
The above is the detailed content of What are the commonly used concurrency tools in Java function libraries?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

Multithreading is an important technology in computer programming and is used to improve program execution efficiency. In the C language, there are many ways to implement multithreading, including thread libraries, POSIX threads, and Windows API.

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

C language multithreading programming guide: Creating threads: Use the pthread_create() function to specify thread ID, properties, and thread functions. Thread synchronization: Prevent data competition through mutexes, semaphores, and conditional variables. Practical case: Use multi-threading to calculate the Fibonacci number, assign tasks to multiple threads and synchronize the results. Troubleshooting: Solve problems such as program crashes, thread stop responses, and performance bottlenecks.
