Table of Contents
OWASP’s definition of AI types and threats
OWASP divides AI security threats into the following five types:
5. Business case for artificial intelligence projects
6. Governance
7. Legal
8. Supervision
9. Use or implement large language model solutions
10. Test, Evaluation, Verification, and Validation (TEVV)
11. Model Cards and Risk Cards
12RAG: Large Language Model Optimization
13.AI Red Team
Home Technology peripherals AI OWASP releases large language model network security and governance checklist

OWASP releases large language model network security and governance checklist

Apr 17, 2024 pm 07:31 PM
AI large language model

The biggest risk currently faced by artificial intelligence technology is that the development and application speed of large language models (LLM) and generative artificial intelligence technology have far exceeded the speed of security and governance.

OWASP releases large language model network security and governance checklist

The use of generative AI and large language model products from companies like OpenAI, Anthropic, Google, and Microsoft is growing exponentially. At the same time, open source large language model solutions are also growing rapidly. Open source artificial intelligence communities such as HuggingFace provide a large number of open source models, data sets and AI applications.

In order to promote the development of artificial intelligence, industry organizations such as OWASP, OpenSSF, and CISA are actively developing and providing key assets for artificial intelligence security and governance, such as OWASP AI Exchange, AI Security and Privacy Guide, and Big Language Model Ten Big Risk List (LLMTop10).

Recently, OWASP released a large language model network security and governance checklist, filling the gap in generative artificial intelligence security governance. The specific content is as follows:

OWASP’s definition of AI types and threats

OWASP’s Language Model Cybersecurity and Governance Checklist defines the differences between artificial intelligence, machine learning, generative artificial intelligence, and large language models.

For example, OWASP defines generative artificial intelligence as: a type of machine learning focused on creating new data, while large language models are used to process and generate human-like "natural content" Artificial Intelligence Models – They make predictions based on the inputs they are provided, and the output is “natural content” that resembles human-generated content.

Regarding the previously released "Big Language Model Top Ten Threat List", OWASP believes that it can help network security practitioners keep up with the rapidly developing AI technology, identify key threats and ensure that enterprises have basic security controls to Protect and support businesses using generative AI and large language models. However, OWASP believes that this list is not exhaustive and needs to be continuously improved based on the development of generative artificial intelligence.

OWASP divides AI security threats into the following five types:

OWASP releases large language model network security and governance checklist

##OWASP's large language model security governance policy deployment is divided into six steps:

OWASP releases large language model network security and governance checklist

The following is the OWASP Big Language Model cybersecurity and governance checklist:

1. Adversary Risk

The adversary risk of the Big Language Model not only involves competitors , also involves attackers whose focus is not only on attack posture, but also on business posture. This includes understanding how competitors are using AI to drive business outcomes, as well as updating internal processes and policies, such as incident response plans (IRPs), to respond to generative AI attacks and incidents.

2. Threat Modeling

Threat modeling is an increasingly popular security technology. It has gained more and more attention with the promotion of the concept of security design system and has been recognized by the United States Network. Recognized by authoritative agencies such as the Security and Infrastructure Security Agency (CISA). Threat modeling requires thinking about how attackers leverage large language models and generative AI to accelerate vulnerability exploitation, the enterprise's ability to detect malicious large language models, and whether organizations can protect large language models and generative AI platforms from internal systems and environments Connection.

3. Artificial Intelligence Asset Checklist

The adage “You can’t protect an unknown asset” also applies to the fields of generative AI and large language models. This part of the OWASP inventory involves the inventory of AI assets for internally developed AI solutions as well as external tools and platforms.

OWASP emphasizes that enterprises must not only understand which tools and services are used internally, but also understand their ownership, that is, who is responsible for the use of these tools and services. The checklist also recommends including AI components in a software bill of materials (SBOM) and documenting AI data sources and their respective sensitivities.

In addition to inventorying existing AI tools, companies should establish a secure process for adding future AI tools and services to the inventory.

4. Artificial Intelligence Security and Privacy Awareness Training

It is often said that "people are the biggest security vulnerability", enterprises can only reasonably integrate artificial intelligence security and privacy training into their generative artificial intelligence Only in the application process of large language models can human risks be greatly alleviated.

This includes helping employees understand existing generative AI/large language model initiatives, technologies and their capabilities, as well as critical security considerations such as data breaches. Additionally, building a security culture of trust and transparency is critical.

A culture of trust and transparency within the enterprise can also help avoid shadow AI threats, otherwise employees will "secretly" use shadow AI without telling IT and security teams.

5. Business case for artificial intelligence projects

Just like cloud computing, most enterprises do not actually develop a coherent strategic business case for the application of new technologies such as generative artificial intelligence and large language models. , it is easy to blindly follow the trend and fall into the hype. Without a sound business case, enterprise AI applications are likely to produce poor results and increase risks.

6. Governance

Without governance, companies cannot establish accountability mechanisms and clear goals for artificial intelligence. The OWASP checklist recommends that enterprises develop a RACI chart (responsibility allocation matrix) for artificial intelligence applications, record and allocate risk responsibilities and governance tasks, and establish enterprise-wide artificial intelligence policies and processes.

With the rapid development of artificial intelligence technology, its legal impact cannot be underestimated and may bring significant financial and reputational risks to enterprises.

Artificial intelligence legal affairs involves a series of activities, such as artificial intelligence product warranty, artificial intelligence end user license agreement (EULA), ownership of code developed using artificial intelligence tools, intellectual property risks and contractual indemnity clauses, etc. In short, make sure your legal team or experts understand the various supporting legal activities your company should undertake when using generative AI and large language models.

8. Supervision

Artificial intelligence regulatory regulations are also developing rapidly, such as the EU's Artificial Intelligence Act, and regulations in other countries and regions will soon be introduced. Businesses should understand their country’s AI compliance requirements, such as employee monitoring, and have a clear understanding of how their AI vendors store and delete data and regulate its use.

9. Use or implement large language model solutions

Using large language model solutions requires specific risks and controls to be considered. The OWASP checklist lists items such as access control, training pipeline security, mapping data workflows, and understanding existing or potential vulnerabilities in large language model models and supply chains. In addition, third-party audits, penetration testing, and even code reviews of vendors are required, both initially and on an ongoing basis.

10. Test, Evaluation, Verification, and Validation (TEVV)

The TEVV process is a process specifically recommended by NIST in its Artificial Intelligence Framework. This involves establishing continuous testing, evaluation, validation, and validation throughout the AI ​​model lifecycle, as well as providing execution metrics on AI model functionality, safety, and reliability.

11. Model Cards and Risk Cards

To ethically deploy large language models, the OWASP checklist requires enterprises to use model and risk cards that can be used to enable users to understand and trust artificial intelligence systems , and publicly address potential negative consequences such as bias and privacy.

These cards can contain items such as model details, architecture, training data methods, and performance metrics. Considerations for responsible AI and concerns about fairness and transparency are also highlighted.

12RAG: Large Language Model Optimization

Retrieval Augmented Generation (RAG) is a method for optimizing the ability of large language models to retrieve relevant data from specific sources. It is one of the ways to optimize pre-trained models or retrain existing models based on new data to improve performance. OWASP recommends that enterprises implement RAG to maximize the value and effectiveness of large language models.

13.AI Red Team

Finally, the OWASP checklist highlights the importance of AI red teaming, which simulates adversarial attacks on AI systems to identify vulnerabilities and validate existing Control and defense. OWASP emphasizes that red teams should be an integral part of a comprehensive security solution with generative AI and large language models.

It is worth noting that enterprises also need to have a clear understanding of the red team services and system requirements and capabilities of external generative AI and large language model vendors to avoid violating policies or even getting into legal trouble.

The above is the detailed content of OWASP releases large language model network security and governance checklist. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1657
14
PHP Tutorial
1257
29
C# Tutorial
1231
24
Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Bytedance Cutting launches SVIP super membership: 499 yuan for continuous annual subscription, providing a variety of AI functions Jun 28, 2024 am 03:51 AM

This site reported on June 27 that Jianying is a video editing software developed by FaceMeng Technology, a subsidiary of ByteDance. It relies on the Douyin platform and basically produces short video content for users of the platform. It is compatible with iOS, Android, and Windows. , MacOS and other operating systems. Jianying officially announced the upgrade of its membership system and launched a new SVIP, which includes a variety of AI black technologies, such as intelligent translation, intelligent highlighting, intelligent packaging, digital human synthesis, etc. In terms of price, the monthly fee for clipping SVIP is 79 yuan, the annual fee is 599 yuan (note on this site: equivalent to 49.9 yuan per month), the continuous monthly subscription is 59 yuan per month, and the continuous annual subscription is 499 yuan per year (equivalent to 41.6 yuan per month) . In addition, the cut official also stated that in order to improve the user experience, those who have subscribed to the original VIP

Step-by-step guide to using Groq Llama 3 70B locally Step-by-step guide to using Groq Llama 3 70B locally Jun 10, 2024 am 09:16 AM

Translator | Bugatti Review | Chonglou This article describes how to use the GroqLPU inference engine to generate ultra-fast responses in JanAI and VSCode. Everyone is working on building better large language models (LLMs), such as Groq focusing on the infrastructure side of AI. Rapid response from these large models is key to ensuring that these large models respond more quickly. This tutorial will introduce the GroqLPU parsing engine and how to access it locally on your laptop using the API and JanAI. This article will also integrate it into VSCode to help us generate code, refactor code, enter documentation and generate test units. This article will create our own artificial intelligence programming assistant for free. Introduction to GroqLPU inference engine Groq

Context-augmented AI coding assistant using Rag and Sem-Rag Context-augmented AI coding assistant using Rag and Sem-Rag Jun 10, 2024 am 11:08 AM

Improve developer productivity, efficiency, and accuracy by incorporating retrieval-enhanced generation and semantic memory into AI coding assistants. Translated from EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG, author JanakiramMSV. While basic AI programming assistants are naturally helpful, they often fail to provide the most relevant and correct code suggestions because they rely on a general understanding of the software language and the most common patterns of writing software. The code generated by these coding assistants is suitable for solving the problems they are responsible for solving, but often does not conform to the coding standards, conventions and styles of the individual teams. This often results in suggestions that need to be modified or refined in order for the code to be accepted into the application

Seven Cool GenAI & LLM Technical Interview Questions Seven Cool GenAI & LLM Technical Interview Questions Jun 07, 2024 am 10:06 AM

To learn more about AIGC, please visit: 51CTOAI.x Community https://www.51cto.com/aigc/Translator|Jingyan Reviewer|Chonglou is different from the traditional question bank that can be seen everywhere on the Internet. These questions It requires thinking outside the box. Large Language Models (LLMs) are increasingly important in the fields of data science, generative artificial intelligence (GenAI), and artificial intelligence. These complex algorithms enhance human skills and drive efficiency and innovation in many industries, becoming the key for companies to remain competitive. LLM has a wide range of applications. It can be used in fields such as natural language processing, text generation, speech recognition and recommendation systems. By learning from large amounts of data, LLM is able to generate text

Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Can fine-tuning really allow LLM to learn new things: introducing new knowledge may make the model produce more hallucinations Jun 11, 2024 pm 03:57 PM

Large Language Models (LLMs) are trained on huge text databases, where they acquire large amounts of real-world knowledge. This knowledge is embedded into their parameters and can then be used when needed. The knowledge of these models is "reified" at the end of training. At the end of pre-training, the model actually stops learning. Align or fine-tune the model to learn how to leverage this knowledge and respond more naturally to user questions. But sometimes model knowledge is not enough, and although the model can access external content through RAG, it is considered beneficial to adapt the model to new domains through fine-tuning. This fine-tuning is performed using input from human annotators or other LLM creations, where the model encounters additional real-world knowledge and integrates it

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework To provide a new scientific and complex question answering benchmark and evaluation system for large models, UNSW, Argonne, University of Chicago and other institutions jointly launched the SciQAG framework Jul 25, 2024 am 06:42 AM

Editor |ScienceAI Question Answering (QA) data set plays a vital role in promoting natural language processing (NLP) research. High-quality QA data sets can not only be used to fine-tune models, but also effectively evaluate the capabilities of large language models (LLM), especially the ability to understand and reason about scientific knowledge. Although there are currently many scientific QA data sets covering medicine, chemistry, biology and other fields, these data sets still have some shortcomings. First, the data form is relatively simple, most of which are multiple-choice questions. They are easy to evaluate, but limit the model's answer selection range and cannot fully test the model's ability to answer scientific questions. In contrast, open-ended Q&A

Deploy large language models locally in OpenHarmony Deploy large language models locally in OpenHarmony Jun 07, 2024 am 10:02 AM

This article will open source the results of "Local Deployment of Large Language Models in OpenHarmony" demonstrated at the 2nd OpenHarmony Technology Conference. Open source address: https://gitee.com/openharmony-sig/tpc_c_cplusplus/blob/master/thirdparty/InferLLM/docs/ hap_integrate.md. The implementation ideas and steps are to transplant the lightweight LLM model inference framework InferLLM to the OpenHarmony standard system, and compile a binary product that can run on OpenHarmony. InferLLM is a simple and efficient L

See all articles