Introducing the system call process under Linux
Let’s look at a picture first to get a general understanding.
First of all, the application can directly call the API provided by the system, which can be done in user mode (Ring3).
Then the corresponding API will save the corresponding system call number to the eax register (this step is implemented through inline assembly), and then use int 0x80 to trigger the interrupt (inline assembly) and enter the interrupt processing function ( This function is completely written in assembly code), and it enters the kernel state (Ring0) at this time.
The system call corresponding to the system call number will be called in the interrupt handling function. In this function, the two registers ds and es will be set to point to the kernel space. In this way, we cannot transfer data from user mode to kernel mode (such as in open(const char * filename, int flag, ...), the address of the string pointed to by the filename pointer is in user space, If you retrieve it from the corresponding place in the kernel space, the string will not exist at all.) What should we do? The fs register in the interrupt handler is set to point to user space, so the problem is solved.
In system calls, corresponding operations are performed, such as opening files, writing files, etc.
After processing, it will return to the interrupt processing function, and the return value will be stored in the eax register.
Returning to the API from the interrupt handling function still saves the return value to the eax register. At this time, it is restored from kernel mode to user mode.
Get the value from eax in the API, make corresponding judgments and return different values to indicate the completion of the operation.
In protected mode, there are various interrupts, and the system call is bound to interrupt number 0x80. When a system call is to be called, int 0x80 is triggered, and the interrupt handling function uses eax to know which system call it wants to call. The reason for this is that there are too many system calls and there will not be enough interrupt numbers, so one is used for centralized management.
There is a table in the operating system that is used to save the addresses of various system call functions. This table is an array, so the addresses of different functions can be accessed through subscripts. Therefore, one interrupt number and various system call numbers can manage multiple system calls.
The above is the detailed content of Introducing the system call process under Linux. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

VS Code system requirements: Operating system: Windows 10 and above, macOS 10.12 and above, Linux distribution processor: minimum 1.6 GHz, recommended 2.0 GHz and above memory: minimum 512 MB, recommended 4 GB and above storage space: minimum 250 MB, recommended 1 GB and above other requirements: stable network connection, Xorg/Wayland (Linux)

The five basic components of the Linux system are: 1. Kernel, 2. System library, 3. System utilities, 4. Graphical user interface, 5. Applications. The kernel manages hardware resources, the system library provides precompiled functions, system utilities are used for system management, the GUI provides visual interaction, and applications use these components to implement functions.

vscode built-in terminal is a development tool that allows running commands and scripts within the editor to simplify the development process. How to use vscode terminal: Open the terminal with the shortcut key (Ctrl/Cmd). Enter a command or run the script. Use hotkeys (such as Ctrl L to clear the terminal). Change the working directory (such as the cd command). Advanced features include debug mode, automatic code snippet completion, and interactive command history.

To view the Git repository address, perform the following steps: 1. Open the command line and navigate to the repository directory; 2. Run the "git remote -v" command; 3. View the repository name in the output and its corresponding address.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Although Notepad cannot run Java code directly, it can be achieved by using other tools: using the command line compiler (javac) to generate a bytecode file (filename.class). Use the Java interpreter (java) to interpret bytecode, execute the code, and output the result.

The main uses of Linux include: 1. Server operating system, 2. Embedded system, 3. Desktop operating system, 4. Development and testing environment. Linux excels in these areas, providing stability, security and efficient development tools.

There are six ways to run code in Sublime: through hotkeys, menus, build systems, command lines, set default build systems, and custom build commands, and run individual files/projects by right-clicking on projects/files. The build system availability depends on the installation of Sublime Text.
