


An in-depth discussion of the physical storage structure of the Linux ext2 file system
Linux ext2 file system is a file system used on most Linux operating systems. It uses an efficient disk storage structure to manage the storage of files and directories. Before we delve into the physical storage structure of the Linux ext2 file system, we first need to understand some basic concepts.
In the ext2 file system, data is stored in data blocks (blocks), which are the smallest allocable units in the file system. Each data block has a fixed size, usually 1KB, 2KB or 4KB. The file system also divides the data blocks on the disk into groups. Each group contains several data blocks and is described by a group descriptor.
Each group has a group descriptor. The group descriptor contains some important information, such as how many data blocks there are in the group, the starting position of the index node (inode), etc. Inodes are data structures used in the ext2 file system to describe file and directory attributes.
Next, let’s take a deep dive into the physical storage structure of the Linux ext2 file system, and attach some code examples to help better understand.
First, we need to open a Linux terminal and use the following command to create a new ext2 file system:
mkfs.ext2 /dev/sda1
This will create a new ext2 file on the device /dev/sda1 system.
Next, we can use the following command to mount the newly created ext2 file system:
mkdir /mnt/ext2 mount /dev/sda1 /mnt/ext2
Now that we have successfully mounted the ext2 file system, let’s check the file system Physical storage structure.
First, let’s look at the structure of the group descriptor table. The size of each group descriptor is 32 bytes, which contains some key information, such as the number of blocks in the group, the number of free blocks, the number of inodes, etc. The following is a simple C language sample code to read the group descriptor table:
#include <stdio.h> #include <unistd.h> #include <fcntl.h> #include <sys/types.h> #include <sys/stat.h> #define BLOCK_SIZE 1024 #define GROUP_DESC_SIZE 32 int main() { int fd; char buf[BLOCK_SIZE]; fd = open("/dev/sda1", O_RDONLY); if(fd == -1) { perror("open"); return 1; } lseek(fd, BLOCK_SIZE * 2, SEEK_SET); // Seek to the location of the group descriptor table read(fd, buf, GROUP_DESC_SIZE); // Read the first group descriptor for(int i = 0; i < GROUP_DESC_SIZE; i++) { printf("%02X ", buf[i]); } close(fd); return 0; }
This code opens the /dev/sda1 device and finds the group descriptor at the second data block (block) descriptor table and reads the contents of the first group descriptor. We can view the group descriptor table information by running this code.
In addition, we can also view the structure of the index node. Inodes also have a fixed size, usually 128 bytes or 256 bytes, and are used to describe file and directory details. The following is a simple C language sample code to read the contents of the index node:
#include <stdio.h> #include <unistd.h> #include <fcntl.h> #include <sys/types.h> #include <sys/stat.h> #define BLOCK_SIZE 1024 #define INODE_SIZE 128 int main() { int fd; char buf[BLOCK_SIZE]; fd = open("/dev/sda1", O_RDONLY); if(fd == -1) { perror("open"); return 1; } lseek(fd, BLOCK_SIZE * 3, SEEK_SET); // Seek to the location of the first inode block read(fd, buf, BLOCK_SIZE); // Read the entire first inode block for(int i = 0; i < INODE_SIZE; i++) { printf("%02X ", buf[i]); } close(fd); return 0; }
This code opens the /dev/sda1 device and finds the first data block at the third data block (block). inode block and read its contents. We can see the structure of the index nodes by running this code.
Through the above code examples and explanations, we have a deeper understanding of the physical storage structure of the Linux ext2 file system. By deeply studying the physical storage structure of the file system, you can better understand how the file system works, which is very helpful for system administrators and developers.
The above is the detailed content of An in-depth discussion of the physical storage structure of the Linux ext2 file system. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











The five basic components of the Linux system are: 1. Kernel, 2. System library, 3. System utilities, 4. Graphical user interface, 5. Applications. The kernel manages hardware resources, the system library provides precompiled functions, system utilities are used for system management, the GUI provides visual interaction, and applications use these components to implement functions.

VS Code One-step/Next step shortcut key usage: One-step (backward): Windows/Linux: Ctrl ←; macOS: Cmd ←Next step (forward): Windows/Linux: Ctrl →; macOS: Cmd →

To view the Git repository address, perform the following steps: 1. Open the command line and navigate to the repository directory; 2. Run the "git remote -v" command; 3. View the repository name in the output and its corresponding address.

Although Notepad cannot run Java code directly, it can be achieved by using other tools: using the command line compiler (javac) to generate a bytecode file (filename.class). Use the Java interpreter (java) to interpret bytecode, execute the code, and output the result.

There are six ways to run code in Sublime: through hotkeys, menus, build systems, command lines, set default build systems, and custom build commands, and run individual files/projects by right-clicking on projects/files. The build system availability depends on the installation of Sublime Text.

The main uses of Linux include: 1. Server operating system, 2. Embedded system, 3. Desktop operating system, 4. Development and testing environment. Linux excels in these areas, providing stability, security and efficient development tools.

Installing Git software includes the following steps: Download the installation package and run the installation package to verify the installation configuration Git installation Git Bash (Windows only)

To install Laravel, follow these steps in sequence: Install Composer (for macOS/Linux and Windows) Install Laravel Installer Create a new project Start Service Access Application (URL: http://127.0.0.1:8000) Set up the database connection (if required)
