How to use the fork function in Linux
Usage of fork function in Linux
In the Linux operating system, the fork() function is a very important system call function, used to create a new process. It is widely used in Unix and Unix-like operating systems. In this article, we will introduce the usage of the fork function in detail and provide some specific code examples.
1. Overview of the fork function
The prototype of the fork function is as follows:
#include <sys/types.h> #include <unistd.h> pid_t fork(void);
The fork function will create a new process, which is a copy of the process that calls fork. After calling fork, two identical processes will be generated, namely the parent process and the child process. The two processes are independent in memory and have independent address spaces.
The parent process calls fork and returns a non-negative number, indicating the PID (process ID) of the child process. The child process calls fork and returns 0. If the fork call fails, -1 is returned, indicating that the creation of the child process failed.
2. Usage of fork function
The following is the general usage of fork function:
#include <stdio.h> #include <sys/types.h> #include <unistd.h> int main() { pid_t pid; pid = fork(); if (pid < 0) { // fork调用失败 perror("fork"); return 1; } else if (pid == 0) { // 子进程 printf("Hello from child process! PID=%d ", getpid()); } else { // 父进程 printf("Hello from parent process! PID=%d, Child PID=%d ", getpid(), pid); } return 0; }
In the above example, we created a new child process through the fork function. In the child process, we print out "Hello from child process!" and the PID of the current process. In the parent process, we print out "Hello from parent process!" along with the PID of the current process and the PID of the child process.
When we run the above code, we will get the following output:
Hello from parent process! PID=1234, Child PID=1235 Hello from child process! PID=1235
It can be seen that when the fork function is called successfully, the parent process and the child process will execute the subsequent code of the program at the same time.
3. The return value of the fork function
In the above example, we use the return value of the fork function to determine whether the current process is a parent process or a child process.
- If the return value is a negative number (-1), it means that the fork call failed.
- If the return value is 0, it means that the current process is a child process.
- If the return value is greater than 0, it means that the current process is the parent process, and the return value is the PID of the child process.
4. Practical application of fork function
The fork function has many application scenarios in actual development, such as multi-process concurrent servers, process pools, etc. Below is a simple example showing how to use the fork function to implement a simple concurrent server.
#include <stdio.h> #include <sys/types.h> #include <sys/socket.h> #include <netinet/in.h> #include <unistd.h> #define PORT 8888 #define MAX_BUFFER_SIZE 1024 int main() { int server_fd, new_socket; struct sockaddr_in address; pid_t child_pid; // 创建socket server_fd = socket(AF_INET, SOCK_STREAM, 0); // 设置address address.sin_family = AF_INET; address.sin_addr.s_addr = INADDR_ANY; address.sin_port = htons(PORT); // 绑定socket和address bind(server_fd, (struct sockaddr *)&address, sizeof(address)); // 监听socket listen(server_fd, 5); while (1) { // 接受客户端连接 new_socket = accept(server_fd, NULL, NULL); // 创建子进程来处理客户端请求 child_pid = fork(); if (child_pid < 0) { // fork调用失败 perror("fork"); return 1; } else if (child_pid == 0) { // 子进程 char buffer[MAX_BUFFER_SIZE] = {0}; read(new_socket, buffer, MAX_BUFFER_SIZE); printf("Received message: %s ", buffer); close(new_socket); return 0; } else { // 父进程 // 关闭父进程不需要的socket close(new_socket); } } return 0; }
In the above example, we use the fork function to implement a multi-process concurrent server. When a client connects, we create a child process to handle the client request. The parent process continues to listen for connections from other clients. In this way, we can handle multiple client connection requests at the same time and improve the concurrent performance of the server.
Summary:
In this article, we introduced the usage of the fork function in Linux and provided some specific code examples. The fork function is a very important system call function in the Linux operating system. It can create a new process and make the concurrent execution of the process possible. By rationally using the fork function, we can implement some complex concurrent applications and improve system performance.
The above is the detailed content of How to use the fork function in Linux. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

VS Code system requirements: Operating system: Windows 10 and above, macOS 10.12 and above, Linux distribution processor: minimum 1.6 GHz, recommended 2.0 GHz and above memory: minimum 512 MB, recommended 4 GB and above storage space: minimum 250 MB, recommended 1 GB and above other requirements: stable network connection, Xorg/Wayland (Linux)

The five basic components of the Linux system are: 1. Kernel, 2. System library, 3. System utilities, 4. Graphical user interface, 5. Applications. The kernel manages hardware resources, the system library provides precompiled functions, system utilities are used for system management, the GUI provides visual interaction, and applications use these components to implement functions.

vscode built-in terminal is a development tool that allows running commands and scripts within the editor to simplify the development process. How to use vscode terminal: Open the terminal with the shortcut key (Ctrl/Cmd). Enter a command or run the script. Use hotkeys (such as Ctrl L to clear the terminal). Change the working directory (such as the cd command). Advanced features include debug mode, automatic code snippet completion, and interactive command history.

To view the Git repository address, perform the following steps: 1. Open the command line and navigate to the repository directory; 2. Run the "git remote -v" command; 3. View the repository name in the output and its corresponding address.

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

Although Notepad cannot run Java code directly, it can be achieved by using other tools: using the command line compiler (javac) to generate a bytecode file (filename.class). Use the Java interpreter (java) to interpret bytecode, execute the code, and output the result.

The main uses of Linux include: 1. Server operating system, 2. Embedded system, 3. Desktop operating system, 4. Development and testing environment. Linux excels in these areas, providing stability, security and efficient development tools.

There are six ways to run code in Sublime: through hotkeys, menus, build systems, command lines, set default build systems, and custom build commands, and run individual files/projects by right-clicking on projects/files. The build system availability depends on the installation of Sublime Text.
