Home Backend Development Python Tutorial Python Machine Learning: A Complete Guide from Beginner to Mastery

Python Machine Learning: A Complete Guide from Beginner to Mastery

Feb 19, 2024 pm 02:00 PM
python AI machine learning algorithm data science

Python 机器学习:从入门到精通的完整指南

1. Introduction to Python Machine Learning

Machine learning is a branch of artificial intelligence that allows computers to learn tasks without being explicitly programmed. This makes machine learning ideal for processing complex and varied data and extracting insights from it.

python is a programming language widely used for machine learning. It has rich libraries and tools that can help you easily build and train machine learning models.

2. Python machine learning basics

Before starting machine learning, you need to understand some basic concepts. These concepts include:

  • Data: Machine learning models require data to train and learn. Data can be structured (such as tabular data) or unstructured (such as text or images).
  • Features: Features are variables in the data that can be used to predict the target variable. For example, if you are building a model to predict the price of a house, the square footage of the house, the number of bedrooms, and the number of bathrooms could all be features.
  • Tag: The tag is the value of the target variable. In the house price prediction example, the label is the price of the house.
  • Model: A model is a function learned by a machine learning algorithm from data. The model can be used to predict labels for new data.

3. Python machine learning algorithm

There are many different machine learning algorithms to choose from. The most commonly used algorithms include:

  • Linear Regression: Linear regression is an algorithm used to predict continuous values ​​such as home prices.
  • Logistic Regression: Logistic regression is an algorithm used to predict binary values ​​such as whether to buy a product.
  • Decision Tree: A decision tree is an algorithm used to create decision rules. Decision trees can be used to predict continuous and binary values.
  • Random Forest: Random Forest is an algorithm that combines multiple decision trees. Random forests are often more accurate than individual decision trees.
  • Support Vector Machine: Support vector machine is an algorithm used for classification and regression. Support vector machines are generally more accurate than decision trees and random forests, but they are also more difficult to train.

4. Python machine learning practice

Now that you know the basics of Python machine learning, let’s start some practical exercises!

Here are some examples of building and training models using Python machine learning:

# 导入必要的库
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

# 加载数据
data = pd.read_csv("house_prices.csv")

# 分割数据为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data.drop("price", axis=1), data["price"], test_size=0.2)

# 创建和训练模型
model = LinearRegression()
model.fit(X_train, y_train)

# 评估模型
score = model.score(X_test, y_test)
print("模型得分:", score)

# 使用模型预测新数据
new_data = pd.DataFrame({"area": [2000], "bedrooms": [3], "bathrooms": [2]})
prediction = model.predict(new_data)
print("预测价格:", prediction)
Copy after login

This code demonstrates how to use Python machine learning to build and train a linear regression model to predict house prices.

5 Conclusion

This guide provides you with the basics of machine learning in Python. You've learned basic machine learning concepts, common machine learning algorithms, and how to build and train machine learning models using Python.

Now you can start exploring more advanced machine learning techniques and applying them to your own projects.

The above is the detailed content of Python Machine Learning: A Complete Guide from Beginner to Mastery. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1666
14
PHP Tutorial
1272
29
C# Tutorial
1252
24
PHP and Python: Different Paradigms Explained PHP and Python: Different Paradigms Explained Apr 18, 2025 am 12:26 AM

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Choosing Between PHP and Python: A Guide Choosing Between PHP and Python: A Guide Apr 18, 2025 am 12:24 AM

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

How to run sublime code python How to run sublime code python Apr 16, 2025 am 08:48 AM

To run Python code in Sublime Text, you need to install the Python plug-in first, then create a .py file and write the code, and finally press Ctrl B to run the code, and the output will be displayed in the console.

Python vs. JavaScript: The Learning Curve and Ease of Use Python vs. JavaScript: The Learning Curve and Ease of Use Apr 16, 2025 am 12:12 AM

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP and Python: A Deep Dive into Their History PHP and Python: A Deep Dive into Their History Apr 18, 2025 am 12:25 AM

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Where to write code in vscode Where to write code in vscode Apr 15, 2025 pm 09:54 PM

Writing code in Visual Studio Code (VSCode) is simple and easy to use. Just install VSCode, create a project, select a language, create a file, write code, save and run it. The advantages of VSCode include cross-platform, free and open source, powerful features, rich extensions, and lightweight and fast.

How to run python with notepad How to run python with notepad Apr 16, 2025 pm 07:33 PM

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

See all articles