Home Java javaTutorial Strategies and techniques to improve the efficiency of Java quick sort function

Strategies and techniques to improve the efficiency of Java quick sort function

Feb 18, 2024 pm 11:25 PM
java optimization Quick sort

Strategies and techniques to improve the efficiency of Java quick sort function

Methods and techniques for optimizing Java quick sort function

Quicksort (Quicksort) is a common sorting algorithm. The idea is to divide the array into smaller ones. and the two larger sub-arrays to achieve sorting, and then sort the sub-arrays again to achieve overall ordering. In practical applications, we need to optimize the performance of the quick sort function to improve the efficiency of sorting. The following will introduce some methods and techniques for optimizing the quick sort function, and give specific code examples.

  1. Random selection of reference elements
    The selection of reference elements in quick sort has an important impact on the efficiency of sorting. The traditional approach is to select the first or last element as the base element. However, if the array is already sorted or approximately sorted, this selection method may cause the time complexity of quicksort to degenerate to O(n^2). In order to avoid this situation, we can randomly select an element as the reference element, which can break the order of the input data to a certain extent and improve performance.

The following is a code example for randomly selecting reference elements:

public class QuickSort {
    public static void quickSort(int[] arr, int low, int high) {
        if (low < high) {
            int pivotIndex = randomPartition(arr, low, high);
            quickSort(arr, low, pivotIndex - 1);
            quickSort(arr, pivotIndex + 1, high);
        }
    }

    public static int randomPartition(int[] arr, int low, int high) {
        int randomIndex = ThreadLocalRandom.current().nextInt(low, high + 1);
        swap(arr, randomIndex, high);
        return partition(arr, low, high);
    }

    public static int partition(int[] arr, int low, int high) {
        int pivot = arr[high];
        int i = low - 1;
        for (int j = low; j < high; j++) {
            if (arr[j] < pivot) {
                i++;
                swap(arr, i, j);
            }
        }
        swap(arr, i + 1, high);
        return i + 1;
    }

    public static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    public static void main(String[] args) {
        int[] arr = {5, 9, 1, 3, 7, 6};
        quickSort(arr, 0, arr.length - 1);

        System.out.println(Arrays.toString(arr));
    }
}
Copy after login
  1. Three sampling partition
    In the traditional quick sort algorithm, a single reference element is used to divide the array. However, when there are a large number of duplicate elements in the array, such a division will cause the time complexity of quick sort to degrade to O(n^2). In order to solve this problem, we can use the Median-Of-Three Partitioning method to be more flexible in the selection of reference elements.

The basic idea of ​​three-sampling division is to select three elements in the array (such as the first, last and middle elements), and then use their median as the reference element. By using such a partitioning method, we can try to avoid the performance degradation problem of quick sort when dealing with a large number of repeated elements.

The following is a code example using three-sampling partitioning:

public class QuickSort {
    public static void quickSort(int[] arr, int low, int high) {
        if (low < high) {
            int[] pivotIndices = medianOfThree(arr, low, high);
            int left = pivotIndices[0];
            int right = pivotIndices[1];
            quickSort(arr, low, left - 1);
            quickSort(arr, left + 1, right - 1);
            quickSort(arr, right + 1, high);
        }
    }

    public static int[] medianOfThree(int[] arr, int low, int high) {
        int mid = (low + high) / 2;
        if (arr[high] < arr[low]) {
            swap(arr, low, high);
        }
        if (arr[mid] < arr[low]) {
            swap(arr, low, mid);
        }
        if (arr[high] < arr[mid]) {
            swap(arr, mid, high);
        }
        swap(arr, mid, high - 1);
        return partition(arr, low + 1, high - 1);
    }

    public static int[] partition(int[] arr, int low, int high) {
        int left = low;
        int right = high;
        int pivot = arr[high];
        int i = low - 1;
        while (true) {
            while (arr[++i] < pivot) {
            }
            while (left < right && pivot < arr[--right]) {
            }
            if (left >= right) {
                break;
            }
            swap(arr, left, right);
        }
        swap(arr, left, high);
        return new int[]{left, right};
    }

    public static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }

    public static void main(String[] args) {
        int[] arr = {5, 9, 1, 3, 7, 6};
        quickSort(arr, 0, arr.length - 1);
        System.out.println(Arrays.toString(arr));
    }
}
Copy after login

By randomly selecting the basis elements and using the three-sampling partitioning method, we can optimize the performance of the Java quick sort function. These methods can improve the efficiency of sorting algorithms when dealing with different data distributions and avoid the degradation of time complexity.

The above is the detailed content of Strategies and techniques to improve the efficiency of Java quick sort function. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Break or return from Java 8 stream forEach? Break or return from Java 8 stream forEach? Feb 07, 2025 pm 12:09 PM

Java 8 introduces the Stream API, providing a powerful and expressive way to process data collections. However, a common question when using Stream is: How to break or return from a forEach operation? Traditional loops allow for early interruption or return, but Stream's forEach method does not directly support this method. This article will explain the reasons and explore alternative methods for implementing premature termination in Stream processing systems. Further reading: Java Stream API improvements Understand Stream forEach The forEach method is a terminal operation that performs one operation on each element in the Stream. Its design intention is

PHP: A Key Language for Web Development PHP: A Key Language for Web Development Apr 13, 2025 am 12:08 AM

PHP is a scripting language widely used on the server side, especially suitable for web development. 1.PHP can embed HTML, process HTTP requests and responses, and supports a variety of databases. 2.PHP is used to generate dynamic web content, process form data, access databases, etc., with strong community support and open source resources. 3. PHP is an interpreted language, and the execution process includes lexical analysis, grammatical analysis, compilation and execution. 4.PHP can be combined with MySQL for advanced applications such as user registration systems. 5. When debugging PHP, you can use functions such as error_reporting() and var_dump(). 6. Optimize PHP code to use caching mechanisms, optimize database queries and use built-in functions. 7

PHP vs. Python: Understanding the Differences PHP vs. Python: Understanding the Differences Apr 11, 2025 am 12:15 AM

PHP and Python each have their own advantages, and the choice should be based on project requirements. 1.PHP is suitable for web development, with simple syntax and high execution efficiency. 2. Python is suitable for data science and machine learning, with concise syntax and rich libraries.

PHP vs. Other Languages: A Comparison PHP vs. Other Languages: A Comparison Apr 13, 2025 am 12:19 AM

PHP is suitable for web development, especially in rapid development and processing dynamic content, but is not good at data science and enterprise-level applications. Compared with Python, PHP has more advantages in web development, but is not as good as Python in the field of data science; compared with Java, PHP performs worse in enterprise-level applications, but is more flexible in web development; compared with JavaScript, PHP is more concise in back-end development, but is not as good as JavaScript in front-end development.

PHP vs. Python: Core Features and Functionality PHP vs. Python: Core Features and Functionality Apr 13, 2025 am 12:16 AM

PHP and Python each have their own advantages and are suitable for different scenarios. 1.PHP is suitable for web development and provides built-in web servers and rich function libraries. 2. Python is suitable for data science and machine learning, with concise syntax and a powerful standard library. When choosing, it should be decided based on project requirements.

Java Program to Find the Volume of Capsule Java Program to Find the Volume of Capsule Feb 07, 2025 am 11:37 AM

Capsules are three-dimensional geometric figures, composed of a cylinder and a hemisphere at both ends. The volume of the capsule can be calculated by adding the volume of the cylinder and the volume of the hemisphere at both ends. This tutorial will discuss how to calculate the volume of a given capsule in Java using different methods. Capsule volume formula The formula for capsule volume is as follows: Capsule volume = Cylindrical volume Volume Two hemisphere volume in, r: The radius of the hemisphere. h: The height of the cylinder (excluding the hemisphere). Example 1 enter Radius = 5 units Height = 10 units Output Volume = 1570.8 cubic units explain Calculate volume using formula: Volume = π × r2 × h (4

PHP: The Foundation of Many Websites PHP: The Foundation of Many Websites Apr 13, 2025 am 12:07 AM

The reasons why PHP is the preferred technology stack for many websites include its ease of use, strong community support, and widespread use. 1) Easy to learn and use, suitable for beginners. 2) Have a huge developer community and rich resources. 3) Widely used in WordPress, Drupal and other platforms. 4) Integrate tightly with web servers to simplify development deployment.

Create the Future: Java Programming for Absolute Beginners Create the Future: Java Programming for Absolute Beginners Oct 13, 2024 pm 01:32 PM

Java is a popular programming language that can be learned by both beginners and experienced developers. This tutorial starts with basic concepts and progresses through advanced topics. After installing the Java Development Kit, you can practice programming by creating a simple "Hello, World!" program. After you understand the code, use the command prompt to compile and run the program, and "Hello, World!" will be output on the console. Learning Java starts your programming journey, and as your mastery deepens, you can create more complex applications.

See all articles