


Why does the condition contained in the mutex part not deadlock in this golang example?
In this golang example, the reason why deadlock will not occur with the conditions contained in the mutex part is because the mutex is passed through `Lock()` and `Unlock() ` method to achieve mutually exclusive access to shared resources. When a goroutine calls the `Lock()` method, if the mutex is already locked by another goroutine, the goroutine will be blocked until the mutex is released. This blocking mechanism ensures that when the mutex is locked, multiple goroutines will not access shared resources at the same time, thereby avoiding the occurrence of deadlock. So in this example, due to the correct usage of mutex, the condition will not be deadlocked.
Question content
I saw this example during a training at O'Reilly. There is a condition that should prevent widgetInventory from becoming negative. The example works, but I don't understand why the program doesn't deadlock when makeSales gets the mutex and widgetInventory is 0.
var ( wg sync.WaitGroup mutex = sync.Mutex{} widgetInventory int32= 1000 newPurchase = sync.NewCond(&mutex) ) func main() { fmt.Println("Starting inventory count = ", widgetInventory) wg.Add(2) go makeSales() go newPurchases() wg.Wait() fmt.Println("Ending inventory count = ", widgetInventory) } func makeSales() { for i := 0; i < 3000; i++ { mutex.Lock() if widgetInventory-100 < 0{ newPurchase.Wait() } widgetInventory -= 100 fmt.Println(widgetInventory) mutex.Unlock() } wg.Done() } func newPurchases() { for i := 0; i < 3000; i++ { mutex.Lock() widgetInventory+= 100 fmt.Println(widgetInventory) newPurchase.Signal() mutex.Unlock() } wg.Done() }
I expect the code to deadlock when makeSales gets the mutex and widgetInventory is 0.
Solution
I didn't notice that the condition was associated with the mutex:
newPurchase =sync.NewCond(&mutex)
Entering .Wait() unlocks the mutex and attempts to reacquire it when the condition signal is received.
condition.Wait() can only be used when acquiring a mutex, so it works at the cost of less readable code :-)
The above is the detailed content of Why does the condition contained in the mutex part not deadlock in this golang example?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

OpenSSL, as an open source library widely used in secure communications, provides encryption algorithms, keys and certificate management functions. However, there are some known security vulnerabilities in its historical version, some of which are extremely harmful. This article will focus on common vulnerabilities and response measures for OpenSSL in Debian systems. DebianOpenSSL known vulnerabilities: OpenSSL has experienced several serious vulnerabilities, such as: Heart Bleeding Vulnerability (CVE-2014-0160): This vulnerability affects OpenSSL 1.0.1 to 1.0.1f and 1.0.2 to 1.0.2 beta versions. An attacker can use this vulnerability to unauthorized read sensitive information on the server, including encryption keys, etc.

Backend learning path: The exploration journey from front-end to back-end As a back-end beginner who transforms from front-end development, you already have the foundation of nodejs,...

Under the BeegoORM framework, how to specify the database associated with the model? Many Beego projects require multiple databases to be operated simultaneously. When using Beego...

The library used for floating-point number operation in Go language introduces how to ensure the accuracy is...

Queue threading problem in Go crawler Colly explores the problem of using the Colly crawler library in Go language, developers often encounter problems with threads and request queues. �...

What should I do if the custom structure labels in GoLand are not displayed? When using GoLand for Go language development, many developers will encounter custom structure tags...

The problem of using RedisStream to implement message queues in Go language is using Go language and Redis...

This article introduces how to configure MongoDB on Debian system to achieve automatic expansion. The main steps include setting up the MongoDB replica set and disk space monitoring. 1. MongoDB installation First, make sure that MongoDB is installed on the Debian system. Install using the following command: sudoaptupdatesudoaptinstall-ymongodb-org 2. Configuring MongoDB replica set MongoDB replica set ensures high availability and data redundancy, which is the basis for achieving automatic capacity expansion. Start MongoDB service: sudosystemctlstartmongodsudosys
