Table of Contents
Correct answer
Home Backend Development Golang Golang xml key name conflict

Golang xml key name conflict

Feb 05, 2024 pm 10:03 PM

Golang xml 键名称冲突

Question content

I need to generate a complex xml file in order to load it into another system. Therefore, tags and tag order cannot be changed as they must follow a precise format to load correctly. I'm currently using the encoding/xml package in golang to try to accomplish this.

The problem I'm having is that I can't have two tags with the same name. I get the following error: main.XMLDict Field "Key1" with label "key" conflicts with field "Key2" with label "key". Below is my simplified code:

import (
    "fmt"
    "encoding/xml"
    "os"
)

type XMLDict struct {
    XMLName xml.Name    `xml:"dict"`
    Key1    string      `xml:"key"`
    Data1   string      `xml:"data"`
    Key2    string      `xml:"key"`
    StringArray XMLStringArray
}

type XMLStringArray struct {
    XMLName  xml.Name    `xml:"array"̀`
    XMLString   []string `xml:"string"`
}

func main() {

    sa := make([]string, 3)
    sa[0] = "g"
    sa[1] = "h"
    sa[2] = "i"

    arr := XMLStringArray{
        XMLString: sa,
    }

    master := XMLDict{
        Key1: "Color",
        Data1: "Random data",
        Key2: "Curve",
        StringArray: arr,
    }

    output, err := xml.MarshalIndent(master, "  ", "    ")
    if err != nil {
        fmt.Printf("error: %v\n", err)
    }

    os.Stdout.Write(output)

    return 
}
Copy after login

Here is an example of the XML file I need to generate:

<dict>
            <key>Color</key>
            <data>
            BAtzdHJlYW10eXBlZIHoA4QBQISEhAdOU0NvbG9yAISECE5TT2Jq
            ZWN0AIWEAWMChARmZmZmg7oehT2DZmYmP4NmZiY/AYY=
            </data>
            <key>Curve</key>
            <dict>
                <key>Interpolation</key>
                <integer>5</integer>
                <key>Points</key>
                <array>
                    <string>{0, 0}</string>
                    <string>{0.05, 0.053871}</string>
                    <string>{0.1, 0.110555}</string>
                    <string>{0.15, 0.166793}</string>
                    <string>{0.2, 0.216919}</string>
                    <string>{0.3, 0.327703}</string>
                    <string>{0.4, 0.440897}</string>
                    <string>{0.5, 0.539322}</string>
                    <string>{0.6, 0.657477}</string>
                    <string>{0.7, 0.763339}</string>
                    <string>{0.75, 0.814082}</string>
                    <string>{0.8, 0.861097}</string>
                    <string>{0.85, 0.904147}</string>
                    <string>{0.9, 0.944079}</string>
                    <string>{0.95, 0.974036}</string>
                    <string>{0.98, 0.990085}</string>
                    <string>{1, 1}</string>
                </array>
            </dict>
            <key>Line Width</key>
            <real>0.0040000001899898052</real>
            <key>Points Diameter</key>
            <real>0.014999999664723873</real>
            <key>Precision</key>
            <real>9.9999997473787516e-05</real>
        </dict>
Copy after login

So, my questions: 1) Is there an easy way to solve this problem, still using the structural approach of building the data and then generating the XML, 2) Is there a better way to build and generate this file than using Stuts or 3) Am I just doing something wrong?

EDIT: Below is the requested input file:

"File created by Curve"
LGOROWLENGTH 3
#
# Curve4 Run Information
#
# Run: Run 1 - Calibration
# Based On: <none>
#
# Values in this file are 'Wanted'
#
# Gray Balance: On
#    reduced after 100%
#    until 100%
#    media white values: Measured
#    media aim points: -0.17 / 0.96
#
NUMBER_OF_FIELDS    6
BEGIN_DATA_FORMAT
SampleID    SAMPLE_NAME CMYK_C  CMYK_M  CMYK_Y  CMYK_K
END_DATA_FORMAT
NUMBER_OF_SETS 17
BEGIN_DATA
A0  "0.00"  0.0000  0.0000  0.0000  0.0000
A1  "5.00"  5.3871  5.1408  5.2761  5.5775
A2  "10.00" 11.0555 10.7418 10.6026 11.0702
A3  "15.00" 16.6793 16.3894 15.8763 16.7064
A4  "20.00" 21.6919 21.7968 21.0234 22.3956
A5  "30.00" 32.7703 32.7458 31.1841 33.6738
A6  "40.00" 44.0897 42.4801 40.0887 44.2966
A7  "50.00" 53.9322 54.2364 49.1680 54.8968
A8  "60.00" 65.7477 64.9423 59.1719 66.4696
A9  "70.00" 76.3339 75.4398 69.4943 77.1661
A10 "75.00" 81.4082 80.5957 75.1423 82.0637
A11 "80.00" 86.1097 84.9296 81.1298 86.7399
A12 "85.00" 90.4147 88.8039 86.7945 90.8142
A13 "90.00" 94.4079 92.6783 92.1110 94.2426
A14 "95.00" 97.4036 96.2097 96.6019 97.2088
A15 "98.00" 99.0085 98.5775 98.7747 98.9000
A16 "100.00"    100.0000    100.0000    100.0000    100.0000
END_DATA
Copy after login


Correct answer


I think there are many solutions to achieve this using XML custom marshaler; this is my attempt.

First of all, in your root <dict> it always seems to be a "list" of items like this:

<key>a-string</key>
<data|integer|real|array|dict>a-value</data|integer|real|array|dict>

<key>another-string</key>
<data|integer|real|array|dict>another-value</data|integer|real|array|dict>
Copy after login

To represent each of these, we can define a KeyValue structure, where Value is just an interface to represent anything it can hold (data , integer,...)

type KeyValue struct {
    Key   string
    Value Value
}

type Value interface {
    getXMLName() string // this will return data, integer, array, etc, depending on the implementation
}
Copy after login

We can then implement Value using the different types provided in the example:

type ValueData struct {
    Data string `xml:",chardata"`
}

func (v ValueData) getXMLName() string { return "data" }

type ValueInteger struct {
    Integer int `xml:",chardata"`
}

func (v ValueInteger) getXMLName() string { return "integer" }

type ValueStringArray struct {
    Array []string `xml:"string"`
}

func (v ValueStringArray) getXMLName() string { return "array" }

type ValueReal struct {
    Real float64 `xml:",chardata"`
}

func (v ValueReal) getXMLName() string { return "real" }
Copy after login

Within the XML tag, chardata is used to avoid including extra levels in our XML document; for ValueStringArray, we use string because your The project is named this way.

Finally, to allow recursion (dict internal dict), we can also define this structure:

type ValueDict struct {
    XMLName    xml.Name `xml:"dict"`
    KeysValues []KeyValue
}

func (v ValueDict) getXMLName() string { return "dict" }
Copy after login

After completing all operations, we can implement a custom marshaler:

func (kv KeyValue) MarshalXML(e *xml.Encoder, _ xml.StartElement) error {
    if err := e.EncodeElement(kv.Key, xml.StartElement{Name: xml.Name{Local: "key"}}); err != nil {
        return err
    }
    if err := e.EncodeElement(kv.Value, xml.StartElement{Name: xml.Name{Local: kv.Value.getXMLName()}}); err != nil {
        return err
    }
    return nil
}
Copy after login

This will allow the generation of projects like this:

<key>Line Width</key>
<real>0.004000000189989805</real>
Copy after login
The name of the

tag (here real) is based on what is returned by the getXMLName() method.

Finally, you can define Go structs and marshals like this:

master := ValueDict{
    KeysValues: []KeyValue{
        {
            Key: "Color",
            Value: ValueData{
                Data: "BAtzdHJlYW10eXBlZIHoA4QBQISEhAdOU0NvbG9yAISECE5TT2JqZWN0AIWEAWMChARmZmZmg7oehT2DZmYmP4NmZiY/AYY=",
            },
        },
        {
            Key: "Curve",
            Value: ValueDict{
                KeysValues: []KeyValue{
                    {
                        Key: "Interpolation",
                        Value: ValueInteger{
                            Integer: 5,
                        },
                    },
                    {
                        Key: "Points",
                        Value: ValueStringArray{
                            Array: []string{
                                "{0, 0}",
                                "{0.05, 0.053871}",
                                "{0.1, 0.110555}",
                                "{0.15, 0.166793}",
                                "{0.2, 0.216919}",
                                "{0.3, 0.327703}",
                                "{0.4, 0.440897}",
                                "{0.5, 0.539322}",
                                "{0.6, 0.657477}",
                                "{0.7, 0.763339}",
                                "{0.75, 0.814082}",
                                "{0.8, 0.861097}",
                                "{0.85, 0.904147}",
                                "{0.9, 0.944079}",
                                "{0.95, 0.974036}",
                                "{0.98, 0.990085}",
                                "{1, 1}",
                            },
                        },
                    },
                },
            },
        },
        {
            Key: "Line Width",
            Value: ValueReal{
                Real: 0.0040000001899898052,
            },
        },
        {
            Key: "Points Diameter",
            Value: ValueReal{
                Real: 0.014999999664723873,
            },
        },
        {
            Key: "Precision",
            Value: ValueReal{
                Real: 9.9999997473787516e-05,
            },
        },
    },
}

output, err := xml.MarshalIndent(master, "  ", "    ")
if err != nil {
    fmt.Printf("error: %v\n", err)
}

os.Stdout.Write(output)
Copy after login

This will print exactly what is in the sample XML provided in your question.

You can test the complete code in the Go Playground: https://go.dev/play/p /k8cEIywx3UB.

The main advantages of this solution are:

  • We just need to implement a custom XML marshaler
  • It can be easily extended if you have other structures in your XML document (let's say a boolean value, we can create a ValueBool implementation Value)

The above is the detailed content of Golang xml key name conflict. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1268
29
C# Tutorial
1248
24
Golang vs. Python: Performance and Scalability Golang vs. Python: Performance and Scalability Apr 19, 2025 am 12:18 AM

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Golang and C  : Concurrency vs. Raw Speed Golang and C : Concurrency vs. Raw Speed Apr 21, 2025 am 12:16 AM

Golang is better than C in concurrency, while C is better than Golang in raw speed. 1) Golang achieves efficient concurrency through goroutine and channel, which is suitable for handling a large number of concurrent tasks. 2)C Through compiler optimization and standard library, it provides high performance close to hardware, suitable for applications that require extreme optimization.

Golang's Impact: Speed, Efficiency, and Simplicity Golang's Impact: Speed, Efficiency, and Simplicity Apr 14, 2025 am 12:11 AM

Goimpactsdevelopmentpositivelythroughspeed,efficiency,andsimplicity.1)Speed:Gocompilesquicklyandrunsefficiently,idealforlargeprojects.2)Efficiency:Itscomprehensivestandardlibraryreducesexternaldependencies,enhancingdevelopmentefficiency.3)Simplicity:

Golang vs. Python: Key Differences and Similarities Golang vs. Python: Key Differences and Similarities Apr 17, 2025 am 12:15 AM

Golang and Python each have their own advantages: Golang is suitable for high performance and concurrent programming, while Python is suitable for data science and web development. Golang is known for its concurrency model and efficient performance, while Python is known for its concise syntax and rich library ecosystem.

Golang vs. C  : Performance and Speed Comparison Golang vs. C : Performance and Speed Comparison Apr 21, 2025 am 12:13 AM

Golang is suitable for rapid development and concurrent scenarios, and C is suitable for scenarios where extreme performance and low-level control are required. 1) Golang improves performance through garbage collection and concurrency mechanisms, and is suitable for high-concurrency Web service development. 2) C achieves the ultimate performance through manual memory management and compiler optimization, and is suitable for embedded system development.

Golang and C  : The Trade-offs in Performance Golang and C : The Trade-offs in Performance Apr 17, 2025 am 12:18 AM

The performance differences between Golang and C are mainly reflected in memory management, compilation optimization and runtime efficiency. 1) Golang's garbage collection mechanism is convenient but may affect performance, 2) C's manual memory management and compiler optimization are more efficient in recursive computing.

C   and Golang: When Performance is Crucial C and Golang: When Performance is Crucial Apr 13, 2025 am 12:11 AM

C is more suitable for scenarios where direct control of hardware resources and high performance optimization is required, while Golang is more suitable for scenarios where rapid development and high concurrency processing are required. 1.C's advantage lies in its close to hardware characteristics and high optimization capabilities, which are suitable for high-performance needs such as game development. 2.Golang's advantage lies in its concise syntax and natural concurrency support, which is suitable for high concurrency service development.

The Performance Race: Golang vs. C The Performance Race: Golang vs. C Apr 16, 2025 am 12:07 AM

Golang and C each have their own advantages in performance competitions: 1) Golang is suitable for high concurrency and rapid development, and 2) C provides higher performance and fine-grained control. The selection should be based on project requirements and team technology stack.

See all articles