A complete guide to parsing NumPy functions
NumPy (Numerical Python) is an open source Python scientific computing library that provides multi-dimensional array objects and tools for operating on arrays. It is one of the core libraries of the Python data science ecosystem and is widely used in fields such as scientific computing, data analysis, and machine learning. This article will analyze the commonly used functions in the NumPy library one by one, including array creation, array operations, mathematical functions, statistical functions, linear algebra, etc., and provide specific code examples.
- Array Creation
NumPy provides a variety of methods to create arrays. Arrays can be created by specifying dimensions, data types, and initialization values. Commonly used functions are:
1.1 numpy.array(): Create an array from a list or tuple.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr) # 输出:[1 2 3 4 5]
1.2 numpy.zeros(): Creates an all-zero array of specified dimensions.
import numpy as np arr = np.zeros((3, 4)) print(arr) """ 输出: [[0. 0. 0. 0.] [0. 0. 0. 0.] [0. 0. 0. 0.]] """
1.3 numpy.ones(): Create an all-one array of specified dimensions.
import numpy as np arr = np.ones((2, 3)) print(arr) """ 输出: [[1. 1. 1.] [1. 1. 1.]] """
1.4 numpy.arange(): Create an arithmetic array.
import numpy as np arr = np.arange(0, 10, 2) print(arr) # 输出:[0 2 4 6 8]
- Array operations
NumPy provides many functions for array operations, including shape operations, indexing and slicing, expansion and stacking, and array transposition. Commonly used functions are:
2.1 reshape(): Change the shape of the array.
import numpy as np arr = np.array([[1, 2, 3], [4, 5, 6]]) new_arr = arr.reshape((3, 2)) print(new_arr) """ 输出: [[1 2] [3 4] [5 6]] """
2.2 indexing and slicing: operate arrays through indexing and slicing.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) print(arr[2]) # 输出:3 print(arr[1:4]) # 输出:[2 3 4] print(arr[:3]) # 输出:[1 2 3] print(arr[-3:]) # 输出:[3 4 5]
2.3 concatenate(): Concatenate two or more arrays.
import numpy as np arr1 = np.array([1, 2, 3]) arr2 = np.array([4, 5, 6]) arr = np.concatenate((arr1, arr2)) print(arr) # 输出:[1 2 3 4 5 6]
2.4 transpose(): Transpose the array.
import numpy as np arr = np.array([[1, 2], [3, 4]]) new_arr = np.transpose(arr) print(new_arr) """ 输出: [[1 3] [2 4]] """
- Mathematical functions
NumPy provides a wealth of mathematical functions, such as numerical operations, trigonometric functions, logarithmic functions, exponential functions, etc. Commonly used functions are:
3.1 np.mean(): Calculate the average of an array.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) mean = np.mean(arr) print(mean) # 输出:3.0
3.2 np.sin(): Calculate the sine value of the array element.
import numpy as np arr = np.array([0, np.pi/2, np.pi]) sin = np.sin(arr) print(sin) # 输出:[0. 1. 1.2246468e-16]
3.3 np.exp(): Perform exponential operation on array elements.
import numpy as np arr = np.array([1, 2, 3]) exp = np.exp(arr) print(exp) # 输出:[ 2.71828183 7.3890561 20.08553692]
- Statistical functions
NumPy provides commonly used statistical functions, including maximum, minimum, median, variance and standard deviation. Commonly used functions are:
4.1 np.max(): Calculate the maximum value of the array.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) max_value = np.max(arr) print(max_value) # 输出:5
4.2 np.min(): Calculate the minimum value of the array.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) min_value = np.min(arr) print(min_value) # 输出:1
4.3 np.median(): Calculate the median of the array.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) median = np.median(arr) print(median) # 输出:3.0
4.4 np.var(): Calculate the variance of the array.
import numpy as np arr = np.array([1, 2, 3, 4, 5]) variance = np.var(arr) print(variance) # 输出:2.0
- Linear Algebra
NumPy provides basic linear algebra operation functions, such as matrix multiplication, matrix inversion, matrix determinant, etc. Commonly used functions are:
5.1 np.dot(): Calculate the dot product of two arrays.
import numpy as np arr1 = np.array([[1, 2], [3, 4]]) arr2 = np.array([[5, 6], [7, 8]]) dot_product = np.dot(arr1, arr2) print(dot_product) """ 输出: [[19 22] [43 50]] """
5.2 np.linalg.inv(): Calculate the inverse of a matrix.
import numpy as np arr = np.array([[1, 2], [3, 4]]) inverse = np.linalg.inv(arr) print(inverse) """ 输出: [[-2. 1. ] [ 1.5 -0.5]] """
The above are only part of the functions in the NumPy library. By understanding how to use these common functions, we can use NumPy more efficiently to perform computing tasks such as array operations, mathematical operations, statistical analysis, and linear algebra. At the same time, by in-depth study of the relevant documents of the NumPy library, we can discover more powerful functions and functions to provide strong support for our scientific computing work.
The above is the detailed content of A complete guide to parsing NumPy functions. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics











Go language provides two dynamic function creation technologies: closure and reflection. closures allow access to variables within the closure scope, and reflection can create new functions using the FuncOf function. These technologies are useful in customizing HTTP routers, implementing highly customizable systems, and building pluggable components.

In C++ function naming, it is crucial to consider parameter order to improve readability, reduce errors, and facilitate refactoring. Common parameter order conventions include: action-object, object-action, semantic meaning, and standard library compliance. The optimal order depends on the purpose of the function, parameter types, potential confusion, and language conventions.

1. The SUM function is used to sum the numbers in a column or a group of cells, for example: =SUM(A1:J10). 2. The AVERAGE function is used to calculate the average of the numbers in a column or a group of cells, for example: =AVERAGE(A1:A10). 3. COUNT function, used to count the number of numbers or text in a column or a group of cells, for example: =COUNT(A1:A10) 4. IF function, used to make logical judgments based on specified conditions and return the corresponding result.

The advantages of default parameters in C++ functions include simplifying calls, enhancing readability, and avoiding errors. The disadvantages are limited flexibility and naming restrictions. Advantages of variadic parameters include unlimited flexibility and dynamic binding. Disadvantages include greater complexity, implicit type conversions, and difficulty in debugging.

The benefits of functions returning reference types in C++ include: Performance improvements: Passing by reference avoids object copying, thus saving memory and time. Direct modification: The caller can directly modify the returned reference object without reassigning it. Code simplicity: Passing by reference simplifies the code and requires no additional assignment operations.

The key to writing efficient and maintainable Java functions is: keep it simple. Use meaningful naming. Handle special situations. Use appropriate visibility.

The difference between custom PHP functions and predefined functions is: Scope: Custom functions are limited to the scope of their definition, while predefined functions are accessible throughout the script. How to define: Custom functions are defined using the function keyword, while predefined functions are defined by the PHP kernel. Parameter passing: Custom functions receive parameters, while predefined functions may not require parameters. Extensibility: Custom functions can be created as needed, while predefined functions are built-in and cannot be modified.

Exception handling in C++ can be enhanced through custom exception classes that provide specific error messages, contextual information, and perform custom actions based on the error type. Define an exception class inherited from std::exception to provide specific error information. Use the throw keyword to throw a custom exception. Use dynamic_cast in a try-catch block to convert the caught exception to a custom exception type. In the actual case, the open_file function throws a FileNotFoundException exception. Catching and handling the exception can provide a more specific error message.
