Home Backend Development Python Tutorial A complete guide to parsing NumPy functions

A complete guide to parsing NumPy functions

Jan 26, 2024 am 10:35 AM
function numpy parse

A complete guide to parsing NumPy functions

NumPy (Numerical Python) is an open source Python scientific computing library that provides multi-dimensional array objects and tools for operating on arrays. It is one of the core libraries of the Python data science ecosystem and is widely used in fields such as scientific computing, data analysis, and machine learning. This article will analyze the commonly used functions in the NumPy library one by one, including array creation, array operations, mathematical functions, statistical functions, linear algebra, etc., and provide specific code examples.

  1. Array Creation
    NumPy provides a variety of methods to create arrays. Arrays can be created by specifying dimensions, data types, and initialization values. Commonly used functions are:

1.1 numpy.array(): Create an array from a list or tuple.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr)

# 输出:[1 2 3 4 5]
Copy after login

1.2 numpy.zeros(): Creates an all-zero array of specified dimensions.

import numpy as np

arr = np.zeros((3, 4))
print(arr)

"""
输出:
[[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
"""
Copy after login

1.3 numpy.ones(): Create an all-one array of specified dimensions.

import numpy as np

arr = np.ones((2, 3))
print(arr)

"""
输出:
[[1. 1. 1.]
 [1. 1. 1.]]
"""
Copy after login

1.4 numpy.arange(): Create an arithmetic array.

import numpy as np

arr = np.arange(0, 10, 2)
print(arr)

# 输出:[0 2 4 6 8]
Copy after login
  1. Array operations
    NumPy provides many functions for array operations, including shape operations, indexing and slicing, expansion and stacking, and array transposition. Commonly used functions are:

2.1 reshape(): Change the shape of the array.

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])
new_arr = arr.reshape((3, 2))
print(new_arr)

"""
输出:
[[1 2]
 [3 4]
 [5 6]]
"""
Copy after login

2.2 indexing and slicing: operate arrays through indexing and slicing.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
print(arr[2])       # 输出:3
print(arr[1:4])     # 输出:[2 3 4]
print(arr[:3])      # 输出:[1 2 3]
print(arr[-3:])     # 输出:[3 4 5]
Copy after login

2.3 concatenate(): Concatenate two or more arrays.

import numpy as np

arr1 = np.array([1, 2, 3])
arr2 = np.array([4, 5, 6])
arr = np.concatenate((arr1, arr2))
print(arr)

# 输出:[1 2 3 4 5 6]
Copy after login

2.4 transpose(): Transpose the array.

import numpy as np

arr = np.array([[1, 2], [3, 4]])
new_arr = np.transpose(arr)
print(new_arr)

"""
输出:
[[1 3]
 [2 4]]
"""
Copy after login
  1. Mathematical functions
    NumPy provides a wealth of mathematical functions, such as numerical operations, trigonometric functions, logarithmic functions, exponential functions, etc. Commonly used functions are:

3.1 np.mean(): Calculate the average of an array.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
mean = np.mean(arr)
print(mean)

# 输出:3.0
Copy after login

3.2 np.sin(): Calculate the sine value of the array element.

import numpy as np

arr = np.array([0, np.pi/2, np.pi])
sin = np.sin(arr)
print(sin)

# 输出:[0.         1.         1.2246468e-16]
Copy after login

3.3 np.exp(): Perform exponential operation on array elements.

import numpy as np

arr = np.array([1, 2, 3])
exp = np.exp(arr)
print(exp)

# 输出:[ 2.71828183  7.3890561  20.08553692]
Copy after login
  1. Statistical functions
    NumPy provides commonly used statistical functions, including maximum, minimum, median, variance and standard deviation. Commonly used functions are:

4.1 np.max(): Calculate the maximum value of the array.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
max_value = np.max(arr)
print(max_value)

# 输出:5
Copy after login

4.2 np.min(): Calculate the minimum value of the array.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
min_value = np.min(arr)
print(min_value)

# 输出:1
Copy after login

4.3 np.median(): Calculate the median of the array.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
median = np.median(arr)
print(median)

# 输出:3.0
Copy after login

4.4 np.var(): Calculate the variance of the array.

import numpy as np

arr = np.array([1, 2, 3, 4, 5])
variance = np.var(arr)
print(variance)

# 输出:2.0
Copy after login
  1. Linear Algebra
    NumPy provides basic linear algebra operation functions, such as matrix multiplication, matrix inversion, matrix determinant, etc. Commonly used functions are:

5.1 np.dot(): Calculate the dot product of two arrays.

import numpy as np

arr1 = np.array([[1, 2], [3, 4]])
arr2 = np.array([[5, 6], [7, 8]])
dot_product = np.dot(arr1, arr2)
print(dot_product)

"""
输出:
[[19 22]
 [43 50]]
"""
Copy after login

5.2 np.linalg.inv(): Calculate the inverse of a matrix.

import numpy as np

arr = np.array([[1, 2], [3, 4]])
inverse = np.linalg.inv(arr)
print(inverse)

"""
输出:
[[-2.   1. ]
 [ 1.5 -0.5]]
"""
Copy after login

The above are only part of the functions in the NumPy library. By understanding how to use these common functions, we can use NumPy more efficiently to perform computing tasks such as array operations, mathematical operations, statistical analysis, and linear algebra. At the same time, by in-depth study of the relevant documents of the NumPy library, we can discover more powerful functions and functions to provide strong support for our scientific computing work.

The above is the detailed content of A complete guide to parsing NumPy functions. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1269
29
C# Tutorial
1249
24
Tips for dynamically creating new functions in golang functions Tips for dynamically creating new functions in golang functions Apr 25, 2024 pm 02:39 PM

Go language provides two dynamic function creation technologies: closure and reflection. closures allow access to variables within the closure scope, and reflection can create new functions using the FuncOf function. These technologies are useful in customizing HTTP routers, implementing highly customizable systems, and building pluggable components.

Considerations for parameter order in C++ function naming Considerations for parameter order in C++ function naming Apr 24, 2024 pm 04:21 PM

In C++ function naming, it is crucial to consider parameter order to improve readability, reduce errors, and facilitate refactoring. Common parameter order conventions include: action-object, object-action, semantic meaning, and standard library compliance. The optimal order depends on the purpose of the function, parameter types, potential confusion, and language conventions.

Complete collection of excel function formulas Complete collection of excel function formulas May 07, 2024 pm 12:04 PM

1. The SUM function is used to sum the numbers in a column or a group of cells, for example: =SUM(A1:J10). 2. The AVERAGE function is used to calculate the average of the numbers in a column or a group of cells, for example: =AVERAGE(A1:A10). 3. COUNT function, used to count the number of numbers or text in a column or a group of cells, for example: =COUNT(A1:A10) 4. IF function, used to make logical judgments based on specified conditions and return the corresponding result.

Comparison of the advantages and disadvantages of C++ function default parameters and variable parameters Comparison of the advantages and disadvantages of C++ function default parameters and variable parameters Apr 21, 2024 am 10:21 AM

The advantages of default parameters in C++ functions include simplifying calls, enhancing readability, and avoiding errors. The disadvantages are limited flexibility and naming restrictions. Advantages of variadic parameters include unlimited flexibility and dynamic binding. Disadvantages include greater complexity, implicit type conversions, and difficulty in debugging.

What are the benefits of C++ functions returning reference types? What are the benefits of C++ functions returning reference types? Apr 20, 2024 pm 09:12 PM

The benefits of functions returning reference types in C++ include: Performance improvements: Passing by reference avoids object copying, thus saving memory and time. Direct modification: The caller can directly modify the returned reference object without reassigning it. Code simplicity: Passing by reference simplifies the code and requires no additional assignment operations.

How to write efficient and maintainable functions in Java? How to write efficient and maintainable functions in Java? Apr 24, 2024 am 11:33 AM

The key to writing efficient and maintainable Java functions is: keep it simple. Use meaningful naming. Handle special situations. Use appropriate visibility.

What is the difference between custom PHP functions and predefined functions? What is the difference between custom PHP functions and predefined functions? Apr 22, 2024 pm 02:21 PM

The difference between custom PHP functions and predefined functions is: Scope: Custom functions are limited to the scope of their definition, while predefined functions are accessible throughout the script. How to define: Custom functions are defined using the function keyword, while predefined functions are defined by the PHP kernel. Parameter passing: Custom functions receive parameters, while predefined functions may not require parameters. Extensibility: Custom functions can be created as needed, while predefined functions are built-in and cannot be modified.

C++ Function Exception Advanced: Customized Error Handling C++ Function Exception Advanced: Customized Error Handling May 01, 2024 pm 06:39 PM

Exception handling in C++ can be enhanced through custom exception classes that provide specific error messages, contextual information, and perform custom actions based on the error type. Define an exception class inherited from std::exception to provide specific error information. Use the throw keyword to throw a custom exception. Use dynamic_cast in a try-catch block to convert the caught exception to a custom exception type. In the actual case, the open_file function throws a FileNotFoundException exception. Catching and handling the exception can provide a more specific error message.

See all articles