Home Technology peripherals AI Introduce the concept of cross-validation and common cross-validation methods

Introduce the concept of cross-validation and common cross-validation methods

Jan 23, 2024 pm 06:15 PM
machine learning

交叉验证的概念 常见交叉验证的方法介绍

Cross-validation is a commonly used method for evaluating the performance of machine learning models. It divides the data set into multiple non-overlapping subsets, part of which serves as the training set and the rest serves as the test set. Through multiple model training and testing, the average performance of the model is obtained as an estimate of the generalization performance. Cross-validation can more accurately evaluate the generalization ability of the model and avoid over-fitting or under-fitting problems.

Commonly used cross-validation methods include the following:

1. Simple cross-validation

Usually, we divide the data set into a training set and a test set, where the training set accounts for 70% to 80% of the total data, and the remaining data is used as the test set. Use the training set to train the model, and then use the test set to evaluate the model's performance. One drawback of this approach is that it is very sensitive to how the data set is split. If the splitting of the training and test sets is inappropriate, it may lead to inaccurate assessments of model performance. Therefore, choosing an appropriate segmentation method is very important to obtain accurate model evaluation results.

2.K-fold cross validation

Divide the data set into K parts, use one part as the test set each time, and the remaining K-1 parts are used as training sets, and then the model is trained and tested. Repeat K times, using different parts as test sets each time, and finally average the K evaluation results to obtain the performance evaluation results of the model. The advantage of this approach is that it is not sensitive to how the dataset is split, allowing for a more accurate assessment of model performance.

3. Bootstrapping method cross-validation

#This method first randomly selects n samples from the data set with replacement as the training set, and the remaining The samples below are used as test sets to train and test the model. Then put the test set back into the data set, randomly select n samples as the training set, and the remaining samples as the test set, repeat K times. Finally, the K evaluation results are averaged to obtain the performance evaluation results of the model. The advantage of bootstrapping cross-validation is that it can make full use of all samples in the data set, but the disadvantage is that it reuses samples, which may lead to a larger variance in the evaluation results.

4. Leave-one-out cross-validation

This method uses each sample as a test set to train and test the model, and repeat K times. Finally, the K evaluation results are averaged to obtain the performance evaluation results of the model. The advantage of leave-one-out cross-validation is that it is more accurate in evaluating small data sets. The disadvantage is that it requires a large amount of model training and testing, and the computational cost is high.

5. Stratified cross-validation

This method is based on K-fold cross-validation, stratifying the data set according to categories. Ensure that the proportion of each category in the training set and test set is the same. This method is suitable for multi-classification problems where the number of samples between classes is unbalanced.

6. Time series cross-validation

This method is a cross-validation method for time series data, which divides the training set in chronological order and test set to avoid using future data for training the model. Time series cross-validation usually uses a sliding window method, that is, sliding the training set and test set forward by a certain time step, and repeatedly training and testing the model.

7. Repeated cross-validation

This method is based on K-fold cross-validation, repeating cross-validation multiple times, each time Using different random seeds or different data set partitioning methods, the performance evaluation results of the model are finally obtained by averaging the multiple evaluation results. Repeated cross-validation can reduce the variance of model performance evaluation results and improve the reliability of the evaluation.

In short, the cross-validation method is a very important model evaluation method in the field of machine learning. It can help us evaluate model performance more accurately and avoid overfitting or underfitting. problem of integration. Different cross-validation methods are suitable for different scenarios and data sets, and we need to choose the appropriate cross-validation method according to the specific situation.

The above is the detailed content of Introduce the concept of cross-validation and common cross-validation methods. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1664
14
PHP Tutorial
1269
29
C# Tutorial
1248
24
15 recommended open source free image annotation tools 15 recommended open source free image annotation tools Mar 28, 2024 pm 01:21 PM

Image annotation is the process of associating labels or descriptive information with images to give deeper meaning and explanation to the image content. This process is critical to machine learning, which helps train vision models to more accurately identify individual elements in images. By adding annotations to images, the computer can understand the semantics and context behind the images, thereby improving the ability to understand and analyze the image content. Image annotation has a wide range of applications, covering many fields, such as computer vision, natural language processing, and graph vision models. It has a wide range of applications, such as assisting vehicles in identifying obstacles on the road, and helping in the detection and diagnosis of diseases through medical image recognition. . This article mainly recommends some better open source and free image annotation tools. 1.Makesens

This article will take you to understand SHAP: model explanation for machine learning This article will take you to understand SHAP: model explanation for machine learning Jun 01, 2024 am 10:58 AM

In the fields of machine learning and data science, model interpretability has always been a focus of researchers and practitioners. With the widespread application of complex models such as deep learning and ensemble methods, understanding the model's decision-making process has become particularly important. Explainable AI|XAI helps build trust and confidence in machine learning models by increasing the transparency of the model. Improving model transparency can be achieved through methods such as the widespread use of multiple complex models, as well as the decision-making processes used to explain the models. These methods include feature importance analysis, model prediction interval estimation, local interpretability algorithms, etc. Feature importance analysis can explain the decision-making process of a model by evaluating the degree of influence of the model on the input features. Model prediction interval estimate

Identify overfitting and underfitting through learning curves Identify overfitting and underfitting through learning curves Apr 29, 2024 pm 06:50 PM

This article will introduce how to effectively identify overfitting and underfitting in machine learning models through learning curves. Underfitting and overfitting 1. Overfitting If a model is overtrained on the data so that it learns noise from it, then the model is said to be overfitting. An overfitted model learns every example so perfectly that it will misclassify an unseen/new example. For an overfitted model, we will get a perfect/near-perfect training set score and a terrible validation set/test score. Slightly modified: "Cause of overfitting: Use a complex model to solve a simple problem and extract noise from the data. Because a small data set as a training set may not represent the correct representation of all data." 2. Underfitting Heru

The evolution of artificial intelligence in space exploration and human settlement engineering The evolution of artificial intelligence in space exploration and human settlement engineering Apr 29, 2024 pm 03:25 PM

In the 1950s, artificial intelligence (AI) was born. That's when researchers discovered that machines could perform human-like tasks, such as thinking. Later, in the 1960s, the U.S. Department of Defense funded artificial intelligence and established laboratories for further development. Researchers are finding applications for artificial intelligence in many areas, such as space exploration and survival in extreme environments. Space exploration is the study of the universe, which covers the entire universe beyond the earth. Space is classified as an extreme environment because its conditions are different from those on Earth. To survive in space, many factors must be considered and precautions must be taken. Scientists and researchers believe that exploring space and understanding the current state of everything can help understand how the universe works and prepare for potential environmental crises

Transparent! An in-depth analysis of the principles of major machine learning models! Transparent! An in-depth analysis of the principles of major machine learning models! Apr 12, 2024 pm 05:55 PM

In layman’s terms, a machine learning model is a mathematical function that maps input data to a predicted output. More specifically, a machine learning model is a mathematical function that adjusts model parameters by learning from training data to minimize the error between the predicted output and the true label. There are many models in machine learning, such as logistic regression models, decision tree models, support vector machine models, etc. Each model has its applicable data types and problem types. At the same time, there are many commonalities between different models, or there is a hidden path for model evolution. Taking the connectionist perceptron as an example, by increasing the number of hidden layers of the perceptron, we can transform it into a deep neural network. If a kernel function is added to the perceptron, it can be converted into an SVM. this one

Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Jun 03, 2024 pm 01:25 PM

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Five schools of machine learning you don't know about Five schools of machine learning you don't know about Jun 05, 2024 pm 08:51 PM

Machine learning is an important branch of artificial intelligence that gives computers the ability to learn from data and improve their capabilities without being explicitly programmed. Machine learning has a wide range of applications in various fields, from image recognition and natural language processing to recommendation systems and fraud detection, and it is changing the way we live. There are many different methods and theories in the field of machine learning, among which the five most influential methods are called the "Five Schools of Machine Learning". The five major schools are the symbolic school, the connectionist school, the evolutionary school, the Bayesian school and the analogy school. 1. Symbolism, also known as symbolism, emphasizes the use of symbols for logical reasoning and expression of knowledge. This school of thought believes that learning is a process of reverse deduction, through existing

Is Flash Attention stable? Meta and Harvard found that their model weight deviations fluctuated by orders of magnitude Is Flash Attention stable? Meta and Harvard found that their model weight deviations fluctuated by orders of magnitude May 30, 2024 pm 01:24 PM

MetaFAIR teamed up with Harvard to provide a new research framework for optimizing the data bias generated when large-scale machine learning is performed. It is known that the training of large language models often takes months and uses hundreds or even thousands of GPUs. Taking the LLaMA270B model as an example, its training requires a total of 1,720,320 GPU hours. Training large models presents unique systemic challenges due to the scale and complexity of these workloads. Recently, many institutions have reported instability in the training process when training SOTA generative AI models. They usually appear in the form of loss spikes. For example, Google's PaLM model experienced up to 20 loss spikes during the training process. Numerical bias is the root cause of this training inaccuracy,

See all articles