Home Technology peripherals AI Analysis of artificial neural network learning methods in deep learning

Analysis of artificial neural network learning methods in deep learning

Jan 23, 2024 am 08:57 AM
deep learning Artificial neural networks

Deep learning is a branch of machine learning that aims to simulate the brain's capabilities in data processing. It solves problems by building artificial neural network models that enable machines to learn without supervision. This approach allows machines to automatically extract and understand complex patterns and features. Through deep learning, machines can learn from large amounts of data and provide highly accurate predictions and decisions. This has enabled deep learning to achieve great success in areas such as computer vision, natural language processing, and speech recognition.

To understand the function of neural networks, consider the transmission of impulses in neurons. After data is received from the dendrite terminal, it is weighted (multiplied by w) in the nucleus and then transmitted along the axon and connected to another nerve cell. Axons (x's) are the output from one neuron and become the input to another neuron, thus ensuring the transfer of information between nerves.

In order to model and train on the computer, we need to understand the algorithm of the operation and obtain the output by entering the command.

Here we express it through mathematics, as follows:

Analysis of artificial neural network learning methods in deep learning

In the above figure, a 2-layer neural network is shown, which contains a hidden layer of 4 neurons and a Output layer of a single neuron. It should be noted that the number of input layers does not affect the operation of the neural network. The number of neurons in these layers and the number of input values ​​are represented by the parameters w and b. Specifically, the input to the hidden layer is x, and the input to the output layer is the value of a.

Hyperbolic tangent, ReLU, Leaky ReLU and other functions can replace sigmoid as a differentiable activation function and be used in the layer, and the weights are updated through the derivative operation in backpropagation.

ReLU activation function is widely used in deep learning. Since the parts of the ReLU function that are less than 0 are not differentiable, they do not learn during training. The Leaky ReLU activation function solves this problem. It is differentiable in parts less than 0 and will learn in any case. This makes Leaky ReLU more effective than ReLU in some scenarios.

The above is the detailed content of Analysis of artificial neural network learning methods in deep learning. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Beyond ORB-SLAM3! SL-SLAM: Low light, severe jitter and weak texture scenes are all handled Beyond ORB-SLAM3! SL-SLAM: Low light, severe jitter and weak texture scenes are all handled May 30, 2024 am 09:35 AM

Written previously, today we discuss how deep learning technology can improve the performance of vision-based SLAM (simultaneous localization and mapping) in complex environments. By combining deep feature extraction and depth matching methods, here we introduce a versatile hybrid visual SLAM system designed to improve adaptation in challenging scenarios such as low-light conditions, dynamic lighting, weakly textured areas, and severe jitter. sex. Our system supports multiple modes, including extended monocular, stereo, monocular-inertial, and stereo-inertial configurations. In addition, it also analyzes how to combine visual SLAM with deep learning methods to inspire other research. Through extensive experiments on public datasets and self-sampled data, we demonstrate the superiority of SL-SLAM in terms of positioning accuracy and tracking robustness.

Super strong! Top 10 deep learning algorithms! Super strong! Top 10 deep learning algorithms! Mar 15, 2024 pm 03:46 PM

Almost 20 years have passed since the concept of deep learning was proposed in 2006. Deep learning, as a revolution in the field of artificial intelligence, has spawned many influential algorithms. So, what do you think are the top 10 algorithms for deep learning? The following are the top algorithms for deep learning in my opinion. They all occupy an important position in terms of innovation, application value and influence. 1. Deep neural network (DNN) background: Deep neural network (DNN), also called multi-layer perceptron, is the most common deep learning algorithm. When it was first invented, it was questioned due to the computing power bottleneck. Until recent years, computing power, The breakthrough came with the explosion of data. DNN is a neural network model that contains multiple hidden layers. In this model, each layer passes input to the next layer and

Understand in one article: the connections and differences between AI, machine learning and deep learning Understand in one article: the connections and differences between AI, machine learning and deep learning Mar 02, 2024 am 11:19 AM

In today's wave of rapid technological changes, Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL) are like bright stars, leading the new wave of information technology. These three words frequently appear in various cutting-edge discussions and practical applications, but for many explorers who are new to this field, their specific meanings and their internal connections may still be shrouded in mystery. So let's take a look at this picture first. It can be seen that there is a close correlation and progressive relationship between deep learning, machine learning and artificial intelligence. Deep learning is a specific field of machine learning, and machine learning

A case study of using bidirectional LSTM model for text classification A case study of using bidirectional LSTM model for text classification Jan 24, 2024 am 10:36 AM

The bidirectional LSTM model is a neural network used for text classification. Below is a simple example demonstrating how to use bidirectional LSTM for text classification tasks. First, we need to import the required libraries and modules: importosimportnumpyasnpfromkeras.preprocessing.textimportTokenizerfromkeras.preprocessing.sequenceimportpad_sequencesfromkeras.modelsimportSequentialfromkeras.layersimportDense,Em

AlphaFold 3 is launched, comprehensively predicting the interactions and structures of proteins and all living molecules, with far greater accuracy than ever before AlphaFold 3 is launched, comprehensively predicting the interactions and structures of proteins and all living molecules, with far greater accuracy than ever before Jul 16, 2024 am 12:08 AM

Editor | Radish Skin Since the release of the powerful AlphaFold2 in 2021, scientists have been using protein structure prediction models to map various protein structures within cells, discover drugs, and draw a "cosmic map" of every known protein interaction. . Just now, Google DeepMind released the AlphaFold3 model, which can perform joint structure predictions for complexes including proteins, nucleic acids, small molecules, ions and modified residues. The accuracy of AlphaFold3 has been significantly improved compared to many dedicated tools in the past (protein-ligand interaction, protein-nucleic acid interaction, antibody-antigen prediction). This shows that within a single unified deep learning framework, it is possible to achieve

TensorFlow deep learning framework model inference pipeline for portrait cutout inference TensorFlow deep learning framework model inference pipeline for portrait cutout inference Mar 26, 2024 pm 01:00 PM

Overview In order to enable ModelScope users to quickly and conveniently use various models provided by the platform, a set of fully functional Python libraries are provided, which includes the implementation of ModelScope official models, as well as the necessary tools for using these models for inference, finetune and other tasks. Code related to data pre-processing, post-processing, effect evaluation and other functions, while also providing a simple and easy-to-use API and rich usage examples. By calling the library, users can complete tasks such as model reasoning, training, and evaluation by writing just a few lines of code. They can also quickly perform secondary development on this basis to realize their own innovative ideas. The algorithm model currently provided by the library is:

Twin Neural Network: Principle and Application Analysis Twin Neural Network: Principle and Application Analysis Jan 24, 2024 pm 04:18 PM

Siamese Neural Network is a unique artificial neural network structure. It consists of two identical neural networks that share the same parameters and weights. At the same time, the two networks also share the same input data. This design was inspired by twins, as the two neural networks are structurally identical. The principle of Siamese neural network is to complete specific tasks, such as image matching, text matching and face recognition, by comparing the similarity or distance between two input data. During training, the network attempts to map similar data to adjacent regions and dissimilar data to distant regions. In this way, the network can learn how to classify or match different data to achieve corresponding

causal convolutional neural network causal convolutional neural network Jan 24, 2024 pm 12:42 PM

Causal convolutional neural network is a special convolutional neural network designed for causality problems in time series data. Compared with conventional convolutional neural networks, causal convolutional neural networks have unique advantages in retaining the causal relationship of time series and are widely used in the prediction and analysis of time series data. The core idea of ​​causal convolutional neural network is to introduce causality in the convolution operation. Traditional convolutional neural networks can simultaneously perceive data before and after the current time point, but in time series prediction, this may lead to information leakage problems. Because the prediction results at the current time point will be affected by the data at future time points. The causal convolutional neural network solves this problem. It can only perceive the current time point and previous data, but cannot perceive future data.

See all articles