


How to implement an online face recognition system using WebSocket and JavaScript
Limited by humans' innate visual processing capabilities, human visual recognition systems cannot be compared with computers in many aspects. For example, human brain power is not enough to recognize a large number of objects in a short time. face. However, in today's advanced computer technology, facial recognition technology has become increasingly mature. Using a combination of computer vision and artificial intelligence, we have been able to develop a variety of facial recognition technologies, one of the most important being online face recognition systems. This article aims to introduce how to use WebSocket and JavaScript to implement an online face recognition system.
First you need to understand what WebSocket is. WebSocket is a network communication protocol based on TCP protocol. It provides a persistent connection between the browser and the server, enabling two-way communication. In this article, we will use WebSocket to send image and recognition information from the client to the server, and to send the recognition results from the server back to the client.
The first step is to create a WebSocket connection. In the client, create a WebSocket connection with the following code snippet:
let socket = new WebSocket("ws://localhost:8080/"); socket.onopen = function() { console.log("WebSocket连接已打开"); }; socket.onmessage = function(event) { console.log(event.data); };
This will open a WebSocket connection on localhost, connecting to port 8080. When the WebSocket connection is opened, the log "WebSocket connection is opened" will be output. When a message is received from the server, the message data is output to the console.
Now we need to implement the function of the client sending image information to the server. There are several methods for capturing images, including the "
let video = document.querySelector('video'); navigator.mediaDevices.getUserMedia({video: true}) .then(function (stream) { video.srcObject = stream; });
It is now possible to draw the captured image into a
let canvas = document.getElementById('canvas'); let context = canvas.getContext('2d'); context.drawImage(video, 0, 0, canvas.width, canvas.height);
The image data can be extracted as a Base64 string and then sent to the server via WebSocket:
let dataUrl = canvas.toDataURL('image/jpeg', 1.0); socket.send(dataUrl);
The server will use OpenCV and Python to process and recognize the received image. The following is a simple Python script that uses OpenCV to cut faces out of images:
import cv2 def detect_faces(image): face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 5) return faces def extract_faces(image_path): image = cv2.imread(image_path) faces = detect_faces(image) for i, (x, y, w, h) in enumerate(faces): face_image = image[y:y+h, x:x+w] cv2.imwrite('face_{}.jpg'.format(i), face_image)
As you can see, this script uses the face detector in OpenCV to detect faces in the image, And cut out the face and save it in the file "face_{}.jpg".
On the server side, you can use Python to write the following WebSocket program.
import asyncio import cv2 import base64 import io from aiohttp import web async def index(request): return web.Response(text="WebSocket服务器已启动!") async def websocket_handler(request): ws = web.WebSocketResponse() await ws.prepare(request) while True: data = await ws.receive() if data.type == web.WSMsgType.TEXT: await ws.send_str("接收到了一张新的图像,请稍候……") img_data = data.data[23:] # 截取“data:image/jpeg;base64,”之后的数据 try: img_bytes = base64.b64decode(img_data) img_stream = io.BytesIO(img_bytes) img_np = cv2.imdecode(np.frombuffer(img_stream.read(), np.uint8), cv2.IMREAD_UNCHANGED) # 图像识别代码 # ... # 向客户端发送识别结果 await ws.send_str("这是一个人脸。") except: await ws.send_str("出错了,无法处理该图像。") elif data.type == web.WSMsgType.ERROR: print("WebSocket连接发生错误! Code:{}".format(ws.exception())) break return ws app = web.Application() app.router.add_get('/', index) app.router.add_get('/ws', websocket_handler) # /ws是WebSocket路径,亦可为其他路径 web.run_app(app, port=8080)
When the WebSocket connection is opened, the websocket_handler function will automatically run and continue to listen for messages from the client. When a new image is received, the Base64 encoding is parsed and processed using OpenCV. After the data is processed, the results are returned to the client.
So far, we have successfully implemented an online face recognition system. The complete client and server side code looks like this:
Client:
<html> <head> <meta charset="UTF-8"> <title>人脸识别</title> </head> <body> <h1 id="人脸识别">人脸识别</h1> <video width="320" height="240" autoplay></video> <canvas id="canvas" width="320" height="240"></canvas> <script> let socket = new WebSocket("ws://localhost:8080/"); socket.onopen = function() { console.log("WebSocket连接已打开"); }; socket.onmessage = function(event) { console.log(event.data); }; let video = document.querySelector('video'); navigator.mediaDevices.getUserMedia({video: true}) .then(function (stream) { video.srcObject = stream; }); let canvas = document.getElementById('canvas'); let context = canvas.getContext('2d'); setInterval(function() { context.drawImage(video, 0, 0, canvas.width, canvas.height); let dataUrl = canvas.toDataURL('image/jpeg', 1.0); socket.send(dataUrl); }, 500); </script> </body> </html>
Server side:
import asyncio import cv2 import base64 import io from aiohttp import web async def index(request): return web.Response(text="WebSocket服务器已启动!") async def websocket_handler(request): ws = web.WebSocketResponse() await ws.prepare(request) while True: data = await ws.receive() if data.type == web.WSMsgType.TEXT: await ws.send_str("接收到了一张新的图像,请稍候……") img_data = data.data[23:] # 截取“data:image/jpeg;base64,”之后的数据 try: img_bytes = base64.b64decode(img_data) img_stream = io.BytesIO(img_bytes) img_np = cv2.imdecode(np.frombuffer(img_stream.read(), np.uint8), cv2.IMREAD_UNCHANGED) # 图像识别代码 # ... # 向客户端发送识别结果 await ws.send_str("这是一个人脸。") except: await ws.send_str("出错了,无法处理该图像。") elif data.type == web.WSMsgType.ERROR: print("WebSocket连接发生错误! Code:{}".format(ws.exception())) break return ws app = web.Application() app.router.add_get('/', index) app.router.add_get('/ws', websocket_handler) web.run_app(app, port=8080)
I hope this article can help you understand how to use WebSocket and JavaScript implements an online face recognition system and quickly builds a feasible system.
The above is the detailed content of How to implement an online face recognition system using WebSocket and JavaScript. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Frequently Asked Questions and Solutions for Front-end Thermal Paper Ticket Printing In Front-end Development, Ticket Printing is a common requirement. However, many developers are implementing...

JavaScript is the cornerstone of modern web development, and its main functions include event-driven programming, dynamic content generation and asynchronous programming. 1) Event-driven programming allows web pages to change dynamically according to user operations. 2) Dynamic content generation allows page content to be adjusted according to conditions. 3) Asynchronous programming ensures that the user interface is not blocked. JavaScript is widely used in web interaction, single-page application and server-side development, greatly improving the flexibility of user experience and cross-platform development.

There is no absolute salary for Python and JavaScript developers, depending on skills and industry needs. 1. Python may be paid more in data science and machine learning. 2. JavaScript has great demand in front-end and full-stack development, and its salary is also considerable. 3. Influencing factors include experience, geographical location, company size and specific skills.

Discussion on the realization of parallax scrolling and element animation effects in this article will explore how to achieve similar to Shiseido official website (https://www.shiseido.co.jp/sb/wonderland/)...

Learning JavaScript is not difficult, but it is challenging. 1) Understand basic concepts such as variables, data types, functions, etc. 2) Master asynchronous programming and implement it through event loops. 3) Use DOM operations and Promise to handle asynchronous requests. 4) Avoid common mistakes and use debugging techniques. 5) Optimize performance and follow best practices.

The latest trends in JavaScript include the rise of TypeScript, the popularity of modern frameworks and libraries, and the application of WebAssembly. Future prospects cover more powerful type systems, the development of server-side JavaScript, the expansion of artificial intelligence and machine learning, and the potential of IoT and edge computing.

How to merge array elements with the same ID into one object in JavaScript? When processing data, we often encounter the need to have the same ID...

Data update problems in zustand asynchronous operations. When using the zustand state management library, you often encounter the problem of data updates that cause asynchronous operations to be untimely. �...
