How to use Redis to implement distributed current limiting function
How to use Redis to implement distributed current limiting function
Introduction:
With the rapid development of the Internet, the number of visits to business systems is also increasing. When traffic is concentrated in a certain business system, it will pose certain threats to the stability and performance of the system. In order to protect business systems, current limiting has become an indispensable means. In a distributed system, Redis can be used to easily implement the distributed current limiting function. This article will introduce how to use Redis to implement distributed current limiting and provide specific code examples.
1. The basic principles and data structure of Redis
Redis is a high-performance key-value storage system based on memory. It supports a variety of data structures such as strings, lists, hashes, etc. Here, we mainly focus on the two data structures of counters and ordered sets in Redis.
- Counter: The counter in Redis uses the String (string) data structure. The counter can be incremented through the INCR command, and the expiration time can be set to facilitate regular cleaning.
- Ordered set: The ordered set in Redis uses the ZSet (ordered set) data structure. Each element can be associated with a score and sorted based on the score. In an ordered set, you can use the ZRANGE command to obtain members within a certain range by score.
2. Ideas for implementing the current limiting function
Through Redis counters and ordered collections, the distributed current limiting function can be easily implemented. The specific ideas are as follows:
- Set a counter to record the number of traffic requests.
- Set a scheduled task to regularly clear the number of expired requests in the counter.
- Use an ordered collection to record the timestamp of each request, arranged by time.
- Every time there is a request, obtain the earliest request time within a certain time range based on the timestamp in the ordered set.
- If there are more than the maximum number of requests within a certain time range (such as 1 second), it will be judged as exceeding the current limit.
3. Code Example
The following is a code example of Redis distributed current limiting written in Java:
import redis.clients.jedis.Jedis; public class RateLimiter { private Jedis jedis; private String key; // Redis中的键 private int maxRequests; // 最大请求数 private int timeWindow; // 时间窗口,单位为秒 public RateLimiter(Jedis jedis, String key, int maxRequests, int timeWindow) { this.jedis = jedis; this.key = key; this.maxRequests = maxRequests; this.timeWindow = timeWindow; } public boolean allowRequest() { long now = System.currentTimeMillis() / 1000; // 当前时间戳,单位为秒 long earliest = now - timeWindow; // 最早的请求时间 jedis.zremrangeByScore(key, 0, earliest); // 清理过期的请求时间 long count = jedis.zcount(key, earliest, now); // 统计指定时间范围内的请求数 if (count < maxRequests) { jedis.zadd(key, now, String.valueOf(now)); // 添加当前请求的时间 return true; } else { return false; } } } // 使用示例 public class Main { public static void main(String[] args) { Jedis jedis = new Jedis("localhost", 6379); RateLimiter rateLimiter = new RateLimiter(jedis, "requestCounter", 10, 1); // 最大请求数为10,时间窗口为1秒 for (int i = 0; i < 20; i++) { System.out.println("第" + (i + 1) + "次请求:" + rateLimiter.allowRequest()); } jedis.close(); } }
The above code implements a simple distribution current limiting function. Among them, the RateLimiter class encapsulates the current limiting logic, and the Main class is used for testing.
Conclusion:
Using Redis to implement distributed current limiting function can easily protect the stability and performance of the business system. Through the cooperation of counters and ordered collections, the number of requests can be flexibly controlled, and by setting the expiration time, expired requests can be automatically cleared. The above is a sample code. The specific usage scenario needs to be adjusted and optimized according to the actual situation. Hope this article helps you!
The above is the detailed content of How to use Redis to implement distributed current limiting function. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

There are two types of Redis data expiration strategies: periodic deletion: periodic scan to delete the expired key, which can be set through expired-time-cap-remove-count and expired-time-cap-remove-delay parameters. Lazy Deletion: Check for deletion expired keys only when keys are read or written. They can be set through lazyfree-lazy-eviction, lazyfree-lazy-expire, lazyfree-lazy-user-del parameters.

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.
