Home Backend Development Python Tutorial Build an efficient asynchronous task processing system: using Celery Redis Django

Build an efficient asynchronous task processing system: using Celery Redis Django

Sep 27, 2023 pm 12:01 PM
redis celery django Asynchronous tasks

构建高效的异步任务处理系统:采用Celery Redis Django

Build an efficient asynchronous task processing system: using Celery Redis Django

Introduction:
In modern web applications, processing asynchronous tasks is a very important task important task. Asynchronous task processing allows us to decouple time-consuming tasks from requests from the main application, improving user experience and overall performance. In this article, we will introduce how to use Celery, Redis and Django framework to build an efficient asynchronous task processing system.

1. Introduction to Celery:
Celery is a Python distributed task queue framework that allows us to distribute tasks to processors or workers and communicate through message queues. Celery supports multiple backends, such as Redis, RabbitMQ, etc., but in this article we will use Redis as the storage backend for the message queue.

2. Introduction to Redis:
Redis is an open source in-memory data structure storage system that can be used as a database, cache and message middleware. Redis has the characteristics of high performance, scalability and durability, and is suitable for building efficient asynchronous task processing systems.

3. Celery configuration in Django:

  1. Install Celery and Redis:
    Use pip command to install Celery and Redis libraries:

    pip install Celery redis
    Copy after login
  2. Configure Django settings.py:
    In the settings.py file of the Django project, add the following configuration items:

    # Celery settings
    CELERY_BROKER_URL = 'redis://localhost:6379/0'
    CELERY_RESULT_BACKEND = 'redis://localhost:6379/0'
    Copy after login
  3. Create a Celery instance:
    In the root directory of the Django project, create a celery.py file and add the following content:

    from __future__ import absolute_import, unicode_literals
    import os
    from celery import Celery
    
    # 设置默认的DJANGO_SETTINGS_MODULE环境变量
    os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'your_project.settings')
    
    # 创建Celery实例
    app = Celery('your_project')
    
    # 从Django配置中加载Celery设置
    app.config_from_object('django.conf:settings', namespace='CELERY')
    
    # 自动从所有已注册的Django app中加载任务模块
    app.autodiscover_tasks()
    Copy after login
  4. Create an asynchronous task:
    In the Django project, create a tasks.py file , and add the following content:

    from __future__ import absolute_import, unicode_literals
    from your_project.celery import app
    
    # 定义异步任务
    @app.task
    def process_task(data):
     # 执行异步任务的逻辑处理
     result = process_data(data)
     return result
    Copy after login
  5. Trigger the asynchronous task:
    In the Django view function, trigger the execution of the task by calling the delay() method of the asynchronous task:

    from django.shortcuts import render
    from your_app.tasks import process_task
    
    def your_view(request):
     if request.method == 'POST':
         data = request.POST.get('data')
         # 触发异步任务
         result = process_task.delay(data)
         # 返回任务结果给用户
         return render(request, 'result.html', {'result': result.id})
     else:
         return render(request, 'your_form.html')
    Copy after login

4. Start the Celery worker:
Enter the following command in the terminal to start the Celery worker:

celery -A your_project worker --loglevel=info
Copy after login

5. Monitor asynchronous tasks:
Through Celery Provided tools, we can monitor and manage the execution of asynchronous tasks. For example, you can use the Flower tool to start a web interface to monitor the asynchronous task queue:

pip install flower

# 启动Flower
flower -A your_project
Copy after login

6. Summary:
In this article, we introduced how to use Celery, Redis and Django frameworks to build an efficient Asynchronous task processing system. By using Celery and Redis, we can easily process time-consuming tasks asynchronously and improve application performance and user experience. The design of this asynchronous task processing system can be applied to various needs, such as background email sending, image processing, etc. I hope this article will help you build an efficient asynchronous task processing system.

The above is the detailed content of Build an efficient asynchronous task processing system: using Celery Redis Django. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Roblox: Bubble Gum Simulator Infinity - How To Get And Use Royal Keys
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers Of The Witch Tree - How To Unlock The Grappling Hook
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Fusion System, Explained
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Hot Topics

Java Tutorial
1667
14
PHP Tutorial
1273
29
C# Tutorial
1255
24
How to build the redis cluster mode How to build the redis cluster mode Apr 10, 2025 pm 10:15 PM

Redis cluster mode deploys Redis instances to multiple servers through sharding, improving scalability and availability. The construction steps are as follows: Create odd Redis instances with different ports; Create 3 sentinel instances, monitor Redis instances and failover; configure sentinel configuration files, add monitoring Redis instance information and failover settings; configure Redis instance configuration files, enable cluster mode and specify the cluster information file path; create nodes.conf file, containing information of each Redis instance; start the cluster, execute the create command to create a cluster and specify the number of replicas; log in to the cluster to execute the CLUSTER INFO command to verify the cluster status; make

How to clear redis data How to clear redis data Apr 10, 2025 pm 10:06 PM

How to clear Redis data: Use the FLUSHALL command to clear all key values. Use the FLUSHDB command to clear the key value of the currently selected database. Use SELECT to switch databases, and then use FLUSHDB to clear multiple databases. Use the DEL command to delete a specific key. Use the redis-cli tool to clear the data.

How to read redis queue How to read redis queue Apr 10, 2025 pm 10:12 PM

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

How to configure Lua script execution time in centos redis How to configure Lua script execution time in centos redis Apr 14, 2025 pm 02:12 PM

On CentOS systems, you can limit the execution time of Lua scripts by modifying Redis configuration files or using Redis commands to prevent malicious scripts from consuming too much resources. Method 1: Modify the Redis configuration file and locate the Redis configuration file: The Redis configuration file is usually located in /etc/redis/redis.conf. Edit configuration file: Open the configuration file using a text editor (such as vi or nano): sudovi/etc/redis/redis.conf Set the Lua script execution time limit: Add or modify the following lines in the configuration file to set the maximum execution time of the Lua script (unit: milliseconds)

How to use the redis command line How to use the redis command line Apr 10, 2025 pm 10:18 PM

Use the Redis command line tool (redis-cli) to manage and operate Redis through the following steps: Connect to the server, specify the address and port. Send commands to the server using the command name and parameters. Use the HELP command to view help information for a specific command. Use the QUIT command to exit the command line tool.

How to implement redis counter How to implement redis counter Apr 10, 2025 pm 10:21 PM

Redis counter is a mechanism that uses Redis key-value pair storage to implement counting operations, including the following steps: creating counter keys, increasing counts, decreasing counts, resetting counts, and obtaining counts. The advantages of Redis counters include fast speed, high concurrency, durability and simplicity and ease of use. It can be used in scenarios such as user access counting, real-time metric tracking, game scores and rankings, and order processing counting.

How to set the redis expiration policy How to set the redis expiration policy Apr 10, 2025 pm 10:03 PM

There are two types of Redis data expiration strategies: periodic deletion: periodic scan to delete the expired key, which can be set through expired-time-cap-remove-count and expired-time-cap-remove-delay parameters. Lazy Deletion: Check for deletion expired keys only when keys are read or written. They can be set through lazyfree-lazy-eviction, lazyfree-lazy-expire, lazyfree-lazy-user-del parameters.

How to optimize the performance of debian readdir How to optimize the performance of debian readdir Apr 13, 2025 am 08:48 AM

In Debian systems, readdir system calls are used to read directory contents. If its performance is not good, try the following optimization strategy: Simplify the number of directory files: Split large directories into multiple small directories as much as possible, reducing the number of items processed per readdir call. Enable directory content caching: build a cache mechanism, update the cache regularly or when directory content changes, and reduce frequent calls to readdir. Memory caches (such as Memcached or Redis) or local caches (such as files or databases) can be considered. Adopt efficient data structure: If you implement directory traversal by yourself, select more efficient data structures (such as hash tables instead of linear search) to store and access directory information

See all articles